The Islamic University of Gaza 8 iy Aty Analal)

Deanship of Research and Graduate Studies] el clafally aled) Giagd) sales

Faculty of Information Technology Gl aglaall Ly ag g €54 <

Master of Information Technology Glaglaall LoagleiSi jiuala

A Model for Detecting Integrity Violation on Files
Stored on Cloud with Error Localization and
Correction

A e A sinall clalal) lals A gl CELEIS) 23 gad
angaiai g hdll ad e and ae dlall

By:
Eman Ahmed Kalloub

Supervised By:

Dr. Tawfiq Barhoom

Associate Professor — Applied Computer Technology

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of
Information Technology
March , 2019

L—2
:Olgiad) Jand A Al Aasia oliaf dadgal) Ul

A Model for Detecting Integrity Violation on Files
Stored on Cloud with Error Localization and
Correction

L e ada genall Calalal) dalalSs ddlu Sl aliss) G'A}a
BLRY) cad Le pliiul (paldll i i s L) Al oda ade cladl Lo ob
9 Aaud il CuAY) U8 o pal al Lgia g gl) JSS Al 0da gy Lalls 4

(AT iy of dnaddad dunde ol 53 Fas ol ale il

Declaration

I understand the nature of plagiarism, and I am aware of the University’s policy on this. The
work provided in this thesis, unless otherwise referenced, is the researcher's own work and has

not been submitted by others elsewhere for any other degree or qualification.

Student's name: Eman A. A. Kalloub rdallall o)

Signature: Eman A. A. Kalloub el

Date: 05/03/2019)

Aj$y AsgLLulll Asglall

The Islamic University of Gaza

N NN R 8,1
22019/04/10 =
Date: s somsvsss snsmvpumins s Tt

£

sfiaabe da gl o atal) 4oy

ASall diad U5 e 5 i Dl daelally Llall el jall g el Canl) 5alee 4381 50 e 5l
/e glaal) L gl 3 A 6 privealall ds o il i plS U s daa] lagl /2l s 5 i e
g s 5a 5 il plaal) L ol 90 =l
Lt ta dlaad) 488 e A3 giaal) cililal) ALal<s A @llgil) GLEIS) 72 3 gad
Aasaual g Uil &3}4
A Model for Detecting Integrity Violation on Files Stored on Cloud

with Error Localization and Correction

bde Agaal) e Ll 22019/04/06 G sal) 21440 iy 30 Cosal) asall a3 A8l 22 g
roe A Sl 5 Aa 5 5l e aSal) diad Cunaind il glaall L o1 535 A0S Clelatial A8 8 dalua

L 9 1 e a9 i Claslus (5895
Wi Ladlia)l (g S8 Jilg
La A Ladlia Jadl ae 358 aaal 2

gl /claglaall Laglgis A 3 piinaldl ds o Rialll miey Ll Cuasl Aglad) ey
(il glaal) Lia g 9i€5
dadd L lgale A gigaiclnagily Mad i (o iy L o3 Lgild A jal) oda Lgadiad 3) ddall) g
ek g
348 51l W
/“‘Q;'\‘E\};-ﬂ S‘AJ‘NJ

S
BN

P.0.Box 108, Rimal, Gaza, Palestine Tel: +,970 (8) 264 4400 s Fax: + 970 (8) 264 4800 5t gelasalé 5y JloyJI 108 e
public@iugaza.edu.ps www.iugaza.edu.ps

P
ﬂ»&@ sl (] L 3(0771\(\\1\memaeé,nﬂf;m/w/z);@h
Lale Al 51 A g 5SN) Adadl) aDiaad [gadn gl
| Ay (e A g SN ASdl ﬁj.mb doolayl dsalall uuw 51 Caald
i/ =) g s Ty Jaltial
T oL W 9383 K d&)»l L,D,)/L/Ng 220174090 : aala
sl Al ciadsall cpaca Wu%nmwss Ay Lgiilaa g lgle g3 ol g
Al Ain) lglla 3 DUl puen sla) 5 o
M\.@.\Jﬂmwudmyu‘)ﬂ‘m"Flcuﬁw‘/u}uﬁ&ﬁyﬁ o
Ol il w8 6 ALY A8l Al e "L il ol salas” S8 g 5 6
.(PDF) _als (WORD) Cale b dalans Allus)l Jsucd pran 25ns @
[PDF +WORD) dliadie cililay 4 jladyl g 4 yll (pillly Cpuodlall g Aoyl Gased 25y @
A s S cladiall b Ll Andin S 3 Gaill ga 55 Andia JS 6 Gaill Gl o
A g S 5 A8 5 Aadl G (bl pans g s) ladiall puen b Gautil) B0 o
oig SN AgSal afga Jo (PDF)MmLsuum 3 wuumsuus o 4 1AM

\)

Abstract

Cloud computing, as a pool of configurable resources virtualized as services over
the internet, spread widely between almost all the technologies available. One aspect
was using cloud servers as a storage system for storing and managing data files. Sharing
stored files between multiple users exposes the file to both authorized and unauthorized
alterations. Unauthorized alteration on these files may cause integrity violation and

errors in those files.

Many integrity violation detection models were proposed. Among several
techniques used for integrity violation detection, hashing took quite a good part. Whole
file hashing and partial file hashing techniques were proposed but neither performed

error localization nor error correction.

The model of this thesis adds a contribution to previous works. Thus the model
objects to not only detect integrity violation but to localize and correct file integrity
violation. The model requires the user to subject his file to pre-processing before
outsourcing it to cloud servers. The metadata resulting from pre-processing takes the
shape of row and column hash values that will be used as a material at integrity check
request. Using files saved metadata, the model shall be able to detect integrity violation,
localize the indexes of violated characters, and correct the localized violations. Several

experiments for testing the model were conducted and applied on files of different sizes.

The evaluation of the proposed method was based on the success and accuracy of
integrity violation detection and whether the violation was localized and corrected. The
size of the metadata needed to perform the check process was also evaluated. Results
show that the model was executed within 0.4723 us average execution time. Also, the
size of metadata was about 0.944 from the original file size when the original file size
was bigger than or equal to 40KB.

Keywords: Integrity Detection , Cloud Storage, File Sharing, Violation, Error , Violation

Localization, Violation Correction, Accuracy, Metadata , Execution Time.

Al) Gaale

oY) e ApslEY) AaslsSil sl 3 Ahad) Lelos L dglandl dsall sels s

Op Ul Al g B L opeadiua) Gu WS 5 cliladl podal WU gldadiu) el g8
el Ll gl) 5230 35 Las lgr gyl 5 lgr el anall guinya 1 (el
Al e AL il Ak e (Sl 23l il e aaell a8) 13g] g sl Gugaag
Glgine (sl Sa o) il gginad JSI hash IS clgu deadiudl G)lll a4l S File Hashing
A ellgil 5 asly SLAY)) elad¥l (e Cilall Al LAY OIS daluad) ela S Y] Cangll . caldll

s damaa o) Uadll adge aaan Jlad ol L Caldl)

waat o anyd) ALyl gl clildl pe ad€ll e a8 zisat sk alell Cadll 20

di Gl e @lily Biay of axdiid) e callaly Gy adall #3gaill aladiul asaaas 5 Uadll <6

Caldl (ggina Baecl 5 Cisial hash valuesdl (w degeas (o Bl clill) oda Llaudl Ao 43)lia
s 5 (Ladll cildlaal) Wadd) ol€e maas Alaje b Lgaladind il

Gl asa eld D) A8LeaYL Lzdsall 138 daia 5 38y LY el e aaadl el &

OSe 3aa3 e ol oIS zagall of il edi g . Layls by s2cl8 e Ledia oM (Metadata)

lehain AU bl aas o con 8 ((MS) 0.4723 sl daugie Ciy 8 dnar 5 Wl

.(KB)

|y

ﬁi:{s; g

o~
\
"" il =

(a3 abad) 1 gl Gy akia 1 ghal Gl G0 @b)

[11 : Qalaal)]

Dedication

To my guardian angel , my Father
To the unconditional love of my life, my Husband

To my beloved Mother and Sisters

\

Acknowledgment

First of all , I thank Allah for all the strength he gave me to finish this work ,
despite all of the hardship ['ve faced. I also thank my priceless family. Special thanks to
my father, my mother, my husband and my beloved sisters for their enormous

encouragement and support.

My thanks and gratitude to my supervisor : Dr. Tawfig Barhoom for his support
and continuous guidance during this research. Without his detailed supervision, this

thesis would not have been possible.

Vi

Table of Contents

DECLARATION ...ttt sttt sttt e st ane e ene st s I
ASAIN ARSI | Lttt R ettt I
ABSTRACT ...ttt bttt s et s et st e e be bt ne b e e re s i
Al afla ettt ettt et ettt ne st ere e e v
DEDICATION ...ttt sttt ettt st e bt ne b nn e ere e VI
ACKNOWLEDGMENT ..ottt ettt ne e VI
TABLE OF CONTENTS ...ttt sttt ene e VI
LIST OF FIGURES ...ttt sttt e XI
LIST OF TABLES ...t nee e e X1
LIST OF ABBREVIATIONSttt X1V
CHAPTER 1: INTRODUCTION. ..ottt 1
1. 1BACKGROUND AND CONTEXT .uuueeetuueeetnuneerunneeersuneeeesneeersnneeesssneesssnnsesssneessssessssnnsessnesesssseesssnseessnesesssnnesssnneeees 1

1.2 STATEMENT OF PROBLEMuuiiiiiiiiiiiiie sttt ettt ettt e e et anne e 3

1.3 OBIECTIVES ...itietie ittt etee ettt ettt e st et e be et e e s e ekt e e mt e e bt e e mb e e nbeeenbeeabeeanbeenbeeanteens 3

1.3.1 MaAIN ODBJECLIVE ...ttt re e ens 3
1.3.2 SPECITIC ODJECLIVES ..ottt 3
1.4 SCOPE AND LIMITATIONScettieuteeiteeatee sttt eteesieeesbeesiseesbeessseesbeessneesseesnseesneeanneesseeanneens 4

1.6 SIGNIFICATION ..utitititestie ettt ettt et et e sse e et e s ae e et e e s sb e e bt e ssb e e sbeeembeesbeeenbeeabeeanbeeareeanneens 5

1.8 OVERVIEW OF THESIS .. .eiitieiuieatiesite ettt ettt ettt et sbe e e e sbe e sneenbeesnneenbeeanneen 5

CHAPTER 2: LITERATURE REVIEWccoiiiiiiiitce et 6
2.1 RELATED CONCEPTS ..eiitiiiutteteesteeateesseeateesseeatessssesnsessseeanseessseansessssssssesssssssesssesansenns 6

2.1.1 CloUd COMPULING....eoitieiieeiie ettt e e e e be e sra e e e e sreeenee e 6
2.1.2 ClOUG STOTAQE ...ttt bbbttt b e bbbttt 8
2.1.3 ClOUT SECUNILY ..veevieiiee ettt ettt e et e e et e e e e nnee e 9
2.1.4 HASNING PIOCESSccuiiuieiieiteite ittt bbbttt bbbttt 9
2.1.5 Integrity Violation DeteCtiONccoviiiiiiie i 10
2.1.6 Error Control COAES.couiiieiieieeie sttt sne e nnes 10

Vil

2.2 RELATED WORKS ...ccitttiitiie ittt sitte ettt e sitee sttt ettt et e st e e nnb e s nnb e e s nnb e e e nnne e e e 12

2.2.1 File Hashing APPHCAIONScoiiiiiiieieieieee e 12
2.2.2 INTEGRITY VIOLATION DETECTION TECHNIQUEScevvivenieresieieiaiesiesienesiesieenseseens 13
2.3 SUMMARY Z ...ttt ettt ettt ettt bt ekttt e he e e bt e e hb e ekt e e hb e e ebe e ea b e e b e e eab e e nbeeanb e e beeenneenreeenee 16
CHAPTER 3: PROPOSED MODEL......ccoiiiiiiiiie e 18
B L OVERVIEW ..ttt sttt ettt s et sttt et et e bt e s e st et et e neebe st et ene b neens 18
3.2 SYSTEM ARCHITECTURE ...uuttiutieitteesteesieeateesiteateesteeaseeesieeasbeesbeesnseesaseanseesseesnseesneesnns 19
3.3 SYSTEM PROCEDURESccutititisiarestesteseasesseseasessessessasessessesessessessesessessessssessensesessessens 20
3.3.1 Save File Data PrOCEAUIE.c.ciieiiiiesieeie sttt enes 20
3.3.2 Check INtegrity PrOCEAUIEccveiieiiecieee et 22
3.4 IMODEL IMODULES......cuiitiiiitetie sttt sttt sttt sttt sttt bt et e et e e e nneennee e 23
3.4.1 File Processing MOTUIEccoeiveiiiiiecece e 24
3.4.2 Violation Localization MOAUIE...........ccoeeiiiieiiee e 30
3.4.3 Violation Correction MOTUIE..........cccviiiiiieiee e 33
3.4.4 FINISNING PrOCEUAUIES.......c.eiiiiiiteite sttt bbb 35
3.5 IMODEL INTERFACEuvtiiisieieiteieteste ettt sttt te sttt tese st st ese st seneanesnens 36
3.6 SUMMARY ...ttt sttt e sttt sttt ettt et ht e et e e e b et e bt e e hb e et e e eb e e e nbeesheeanbeeabeeenbeenreeenes 38
CHAPTER 4: EXPERIMENTS AND EVALUATIONS ..o 39
4.1 OVERVIEW ...ttt ettt ekttt sttt e bttt e s he e e bt e ket et e e sat e et e e beeenneennreenes 39
4.2 EVALUATION OBJIECTIVE ..uiiiiiieitieeieesiteesteesiee et e steeateesseeanbeesbeesnteesseeanbessseesnseesneesnns 39
4.3 ASPECTS OF EVALUATIONciiuiiiitttetee sttt ettt ettt sttt nne e 39
4.3.1 AACCUIACYveeutiieete etttk b ke bbbt b ettt b et nb e 40
4.3.2 Computation EFfiCIBNCYccviiiiiice e 40
4.3.3 COMPULALION STOTAJEveveeieeiieieieie sttt 41
4.4 LIST OF EXPERIMENTS ..utiiiiiiiiieitieatie sttt st ettt e et e st et esaneanbeesbneanneenneeenes 41
4.4.1 Experimental ENVIFONMENT.........ccoiiiiiiiieiie e 42
4.5 MODEL EVALUATION ...ttt sttt ettt 51
4.5.1 AccUracy EValUALIONcouiiiiii i 51
4.5.2 COMPULALION STOTAJEovvieiieiiie ettt e e re e e anns 51
4.5.3 Computation EFfICIENCYc.ooiiiiiiiii e 52
4.6 SUMMARYttiiitaiie ettt e sttt e ase e e bt e s aee bt e she e e bt e eb e e e be e ahe e et e e ebe e ambeesmeeanbeeabeeanneenneeanns 52

CHAPTER 5: MODEL OPTIMIZATION......coiiiiiiiiiiieciee s o4

5.1 OVERVIEW ..ttt sttt sttt se ettt ettt e st et et ne et et e neabe e e e nne st s 54
5.2 FIRST OPTIMIZATION MODEL : SUB ROW INDEX ADDITION ...ccctviiiieriieniieenieesieesieeenne o4
5.2.1 First Optimization Model : Localizationccccoovveieiieieeii e 56
5.2.2 First Optimization Model DIiSCUSSIONc.coviiiiriiiiicieeee e 61
5.3 SECOND OPTIMIZATION MODEL : READ FILE CONTENT AS ONE ROWcccovevevrnnene. 62
5.3.1 Second Optimization Model DISCUSSION...........ccoceriririiieieieresie e 66
5.4 SUMMARY ..eiietiittiteiests ettt et te st e s e sesbe e s be st e st e be st e e se et e b e st e ne st et e neebe e e e be st s 67
CHAPTER 6: DISCUSSION , CONCLUSION AND FUTURE WORK.................. 68
8.1 OVERVIEW ...ttt ettt sttt ettt ettt he et st e bt e e st e et e e st e e nbe e emb e e beeenteenbeeenes 68
6.2 DISCUSSION OF THE THREE IMODELS.cvitiiteieiiitesiesietesiesieestesieeene st s sne e seesessenes 68
(RSN @] N (o] I B 1] [N RS RSROTRTPRPR 73
B.4 FUTURE WORKcuiiitiiieiesietestetase st ste st sttt sttt st eseabesbeseasestetenasteseeaenessenes 74
REFERENGCES. ..ottt bbbt se b e ene e 75

Figure 2.
Figure 2.
Figure 2.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

List of Figures

1: Cloud Computing Service Types with Examples(Voorsluys et al., 2011).....7
2: Different Secure Hashing Algorithms(Dang, 2015)ccccccevviiiniieniennnnne 10
3: Verify Server Position(Ateniese et al., 2007)cccoovevviieiiieneie e 15
12 MaAIN MOUUIES ...t 19
2: Save File Data SyStem ProCRAUNE ..o 20
3: Check File Integrity system proCedure.........cccocvvivveiveieeiesieese e 22
4: First stage of file ProCessing..........cooviieiiieieieiese e 25
5: Second Stage of File ProCesSINGcccevviiiiieieiie i 27
6: ApPlY hash TUNCLIONccvoiiiiii e 28
7: ROW hash ValUES........c.ooiiiiiicc e 29
8: ColumN ash VAIUESccueeiiiieece e 29
9: Localize Violated Rows and COlUMNScccooviiiiiiniinieieee e 31
10: Localizing the Violation INDeXEScceieieieiiniiineeee e 32
11: Violation Correction Moduleccooviiiiieieieeee e 34
12: Snapshot of the proposed SYSIEMcceerieienenireee e 36
13: Expected result SNapshot............cccveieeiiiic i 37
14: ReStored VIOIAted FOW.........ciieiieeriecieeie et 37
15: RESOrEA Tl ..o 37
1: File Size Classification (Lulu, 2016).ccccoovvrvmreerereieeeeeeeeeeee e 42
2: Experiment #1-original and violated content..........c..coccoovevvevvevereeveceren. 43
3: Experiment #1- Localization and COrreCtionccocevvvvverenenenenenenienns 43
4: Experiment #1- ASSUraNCe MESSAJEecvveeiiieiiieiie et e esieesre e e see e 44
5: Experiment #2- original and violated content...........c.ccoovvvieiiicniiinnnen 44
6: Experiment #2 -Localization and COrreCtioncccccveveeiieeiiesieesie s 45
7: Experiment #2- ASSUranCe MESSAJEcouerveriereriiriiieeeeeeee e 45
8: Experiment #3- original and violated content.............ccccocceviieveiiiecie i, 46
9: Experiment #3- Localization and COrreCtionccocevvvverenenenenenennnns 46
10: Experiment #4-original and violated content...............cccocev e e, 47

Xl

file:///E:/master_Final_mod.docx%23_Toc2641129
file:///E:/master_Final_mod.docx%23_Toc2641140
file:///E:/master_Final_mod.docx%23_Toc2641146

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 6.
Figure 6.
Figure 6.
Figure 6.

11: Experiment #4- Localization and Correctionccccocevvevesieseese s 47
12: : Experiment #4 -ASSUranCce MESSAJEccververieriererieieieie e 48
13: Percentage of metadata size to original data Size..........c.cccceecvvvveiveiiesnenne. 50
14: Model execution time for files on Table 4-6..........cccccevveiiiiiniicincce, 50
15: Multiple ViIOlations CrOSSccvcveieerieiieiiesiesie e esie e sra e sie e 52
16: Localization but NO COITECLIONccevuiiiiiieie et 53
1: SUb ROW Hash MatriX........ooniiriniiie e 55
2: Localizing the Violation in EaCh ROWcccoiiiiiiiiiiiee e 56
3: Percentage of metadata size to original data Size.............ccccoeevviveivecinennenn, 60
4: Model execution time for files on Table 5-1.........ccccoovviiiiiiiiicicereee 60
5. T FilE CONENT ..o e 63
6: Percentage of metadata size to original data Size...........cccccoeveriiiiinnnnnne 65
7: Model execution time for files on Table 5-1........ccccovvviiiiiiniienc e 65
1: Comparison of the Three Models...............ooooiiiiiiiiiii 70
2: Three models eXeCUtioN TIMEccccveieiiiiie e 71
3: Three models metadata size comparison with original file size................... 71
4: Restored Original File CoNtentccoevviieiieiece e 74

Xl

file:///I:/master_Final_mod_1.docx%23_Toc3410798

List of Tables

Table2. 1: TRC aNd LRCoioieeee et s 11
Table2.2 : Summarization of the related WOrk ..o 16
Table 3. 1: Localization INEXES.o.iniiieii e 33
Table 4. 1: List of Experiments Applied to Testthe Model.................................. 41
Table 4. 2: Explanation of Figure 4.3 on EXperiment #1ccocoooviiieienencncnenene 44
Table 4. 3: Explanation of Figure 4.6 on EXperiment #2ccccooveveveenesveseese s 45
Table 4. 4: Explanation of Figure 4.9 on EXperiment #3ccocoovieieniienineneseeens 46
Table 4. 5: Explanation of Figure 4.11 on EXperiment #4cccccovvvvvveie v, 48
Table 4. 6: Model Tested on Different File Sizes in Which All the Localized Violation

AT £ O] 1= ot =T SRS SO TR 49
Table 5. 1: First Optimization Model Tested on Different File Sizes in Which all
Localized Violations were COrreCtedc.ovvririniiriniiei e, 59
Table 5. 2: Compare results of original model and first optimization model.................. 61
Table 5. 3: Content Translated t0 ONE ROWccoveeiiiiiii i 63
Table 5. 4: Second Optimization Model Tested on Different File Sizes in Which All The
Localized Violations Were COrTeCed..........coovririiieieiese e 64
Table 5. 5: Comparison of Second optimization model with the original model............ 66
Table 5. 6: Comparison of second and first optimization model...............ccccoevveiennn. 67
Table 6. 1: Original Model EValuation.............ccccoeiiiiiiiiiieece e 68
Table 6. 2: Comparison of the three Models...........cccoveiiieiiiic i 69
Table 6. 3: Description of violation POSITIONS...........coeiiiiiirinesi e 72
Table 6. 4: Position violation capability for each modelcccccooviiiiiiiiciicce, 72

X

List of Abbreviations

EOL End of Line

EOF End of File

CSS Cascading Style Sheets

HTML Hypertext Markup Language

laaS Infrastructure As A Service

KB Kilo Bytes

LRC Longitudinal Redundancy Check

MAC Message Authentication Code Algorithm
MD5 Message Digest Algorithm

S Microseconds

NIST National Institute of Standards and Technology
PaaS Platform As A Service

PHP Hypertext Preprocessor

POR Proof of Retrievability

POS Proofs of Possession

SaaS Software As A Service

SHA Secure Hash Algorithm

SQL Structured Query Language

TRC Transverse Redundancy Check

XV

Chapter 1
Introduction

Chapter 1: Introduction

To be in the era of speed and dominance of the internet, sharing became easy and
comprehensive. Cloud computing provided a complementary storage system to support
the need of sharing for different users and facilities. With that came security challenges

and many researchers contributed in providing solutions.

Specifically speaking, sharing files can cause integrity violation on file data.
Unauthorized modification on files may cause violation of files integrity. For that
reason, researchers proposed many solutions to state if the integrity of file has been
violated or not. File hashing before sharing file on the cloud was a good method to
detect the occurrence of violation of integrity on the file. A variety of methods and
techniques regarding file hashing aimed for detecting integrity violation were also

proposed.

In this thesis, hashing was used to detect integrity violation of shared files.
Violation is defined as an unauthorized change of some of the file content. The model of
the thesis aims to state if an integrity violation has occurred, localize the exact location

(index) of violation and correct the violation.

In this chapter, an introduction of cloud as storage, file sharing and hashing as file
security is briefly reviewed. Also, all the aspects of this thesis and how it’s organized are

explained.

1.1 Background and Context
With the huge advancement of technology, accessing data over the network via
various computing devices comes the desire of storing data files on storage system.
Storage system allows users to store and access their data from any device and from any
location via a network. Cloud computing literally provided services and resources that

keep up with the growing needs of organizations and individuals.

Cloud computing has been used as a popular business model where business
computing resources are delivered as a utility on demand to customers over the internet
(Aldossary & Allen, 2016; Leesakul, Townend, & Xu, 2014). Generally, cloud
computing is defined from the point of view or according to the technology used for
system development. In other words, cloud computing is defined as a business model
that present computing resources as a service on demand to users and customers over the
internet (Mell & Grance, 2011).

Although many storage systems exist the benefits of cloud as storage surpass them
especially in scalability, portability and cost reduction (Rajathi & Saravanan, 2013).
Google drive is an example of cloud storage that provides services that include saving

files on the cloud and sharing files between multiple users.

Outsourcing sharable data files to the cloud allow many users to access this data.
Some authorized users may commit unauthorized modifications. As well as valuable
data stored on the cloud are vulnerable to unauthorized access and alteration since the
data is handled by external parties. This lead to many researches and measures to detect
security breaches of data stored in the cloud including integrity violation (Anil &
Thanka, 2013).

Because an online storage system like the cloud is used to store important files
with user's alteration allowed it’s important to protect the integrity of files and detect any
integrity violation. Moreover, untrustworthy cloud servers make users think twice before

saving important data on the cloud (Rong, Nguyen, & Jaatun, 2013).

Many studies were conducted with the purpose of protecting the integrity of files
stored on the cloud and detecting if a violation has occurred. Recently, a study surveyed
most of those techniques in details (Zafar et al., 2017). Most of the previous researches
conducted integrity check on shared files. They mostly aimed to check if the integrity of
files has been violated or not. Using different hashing functions and schemes, their focus
did not slide anywhere near localizing the violation or correcting it.

With that in mind, a model for detecting integrity violation on shared files is
proposed. The highlight of the proposed model is that it will conduct violation
localization and violation correction. The model will consist of three modules: First, file
processing is used to produce metadata from file content. Second, Violation localizations
module is called to localize indexes of violations. Third, Violation correction module is
called to correct violations at localized indexes. Metadata of the file is mostly a set of
hash values. That’s why the violation location is identified by the location of the

changed hash value.

The three modules of the proposed model will be explained in details in chapter
three. The model gives an assurance to the file owners. This is demonstrated by
presenting a process to recover the original file content and provide the file owner with a
downloadable version. This last step is provided as an extra confirmation of the models

efficiency.

1.2 Statement of Problem

Outsourcing files to cloud servers move control over files from file owner to cloud
servers. To assure file owners about the integrity of their outsourced files, many integrity
violation models were proposed. It’s true that previous studies detected integrity
violation, but none of them approached a way to localize and correct the violations.

1.3 Objectives

1.3.1 Main Objective
The main objective of this thesis is to develop an integrity violation detection
model empowered with the ability to localize and correct the detected violations. The

model will be applied on text file.

1.3.2 Specific Objectives
1. Collect a set of files with different sizes.
2. Select a secure and collision resistant hash function.
3. Design the model to consist of three modules: File processing, Violation

localization and Violation correction.

Design the model’s client interface to save file data and send check requests.
Implement the proposed model to meet its main objective.

Relieve the model user by providing a downloadable version of the restored file
content.

Evaluate the efficiency of the model in terms of accuracy, execution time and
metadata size.

Present two optimization models and conclude the enhancements and the
drawbacks.

Evaluate and discuss the three models and conduct comparisons.

1.4 Scope and Limitations

The proposed model is about developing techniques to be taken after reporting a

file’s integrity as violated. File processing constructs a row-column matrix from file

contents. Rows will lead to a list of row hash values, so will the columns. The two lists

will be compared with another two lists computed at the request of integrity check. The

comparison defines the violated rows and columns. Localization works on the violated

rows and columns to locate the violated characters indexes. Correction aims to correct

the localized violated characters.

1.
2.

The model is applied only on text files and did not consider tabular data.

The files size used on testing did not exceed two megabyte.

The model steps and runs a small integrity check process by comparing hash
values computed for whole file before and after sharing file on the cloud. This
process avoids unnecessary execution of model modules when the file is actually
integral.

The procedures taken after detecting violation are : File processing, Violation
Localization and Violation Correction.

Integrity was the only security challenge of public cloud storage discussed on
this work.

Correcting the violation is done on the localized violated indexes.

As limitation :

a. The research is only empirical and not comparative that’s because other
researches did not perform violation localization or correction.

b. Violation correction for each violation is guaranteed on a condition ,
violated row or column was caused due to one character change only.

c. If the row or column has multiple character violations, the corresponding

columns or rows respectively must have only on character change.

1.6 Signification

Sharing files between users on storage systems controlled by other parties than the
file owner can be a stressful concern to file owner. That’s why many researchers
provided ways to check if a shared file is still integral. Hashing was used as means for
checking integrity and relived file owners about their files integrity. The proposed model
gives extra assurance and develops a way for detecting the violation location. Not only
that, but it will also correct those violations and try to recover the file original content. If

integrity is guaranteed back, that’s a whole new level of files integrity security.

1.8 Overview of Thesis

Chapter Two discusses previous studies regarding using hashing as a technique to
detect integrity violations of files. Whole file hashing and partial file hashing are
discussed. It also presents the cloud system and briefly discusses cloud as storage.
Chapter Three explains all three modules of the proposed approach. The File
Processing Module, Violation Localization Module and Violation Correction Module
are explained in details. Flowcharts and pseudo code are used to demonstrate the used
methods and techniques.

Chapter Four illustrates experiments used through testing the proposed model and
discusses the results extensively to highlight the model accuracy.

Chapter Five presents two optimization models of the original model. It also holds
experiments and discusses results.

Chapter Six concludes the research contributions and conclusions. Also presents plans

for future work.

Chapter 2
Literature Review

Chapter 2: Literature Review

Using cloud services deployed as a storage system became trendy between
organizations and independent file owners. With trends, comes many security
challenges. Special mention On this thesis to the integrity of shared files. Researchers
worked incrementally to provide solutions regarding detecting integrity violations. File
hashing techniques contributed big time among provided solutions. On this chapter, file
sharing using a cloud storage system is discussed as well as the role of hashing in
detecting integrity violation.

This chapter is divided into two sections:

- Section one discusses the related concepts for this research.

- Section two discusses the related works for this research.

2.1 Related Concepts

This section introduces the technological concepts mentioned in this research.

Each related concept is explained briefly.

2.1.1 Cloud Computing

The National Institute of Standards and Technology(NIST) (Armbrust et al., 2009)
characterized cloud computing as “... a pay-per-use model for enabling available ,
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g. networks , servers, storage, applications, services) that can be rapidly
provisioned and released with minimal management effort or service provider

interaction. ”

Although there are many definitions for cloud computing, the ultimate goal
noticed is to allow customers to run their everyday IT infrastructure in the cloud
(Voorsluys, Broberg, & Buyya, 2011). Figure 2-1 illustrates cloud computing service

types with examples.

IT as a Service (ITaaS)

laaS “PaaS” “SaaS” “StaaS”

Infrastructure Platform Software Storage

as a service as a service as a service as a service

IT Services: Application Applications Storage

= Servers building Services:

= Network blocks and =Primary

= Storage standards =Backup

= Management = Archive

= Reporting = DR
Examples Examples Examples Examples
BT Amazon EC2 Yahoo! E-mail Amazon S3
Telstra Force.com SalesForce.com Nirvanix
T-Systems (ITaaS) Navitaire Google apps

Figure 2. 1: Cloud Computing Service Types with Examples
(Voorsluys et al., 2011)

The service models on Figure 2-1 are explained as follows :

1. Software as a Service (SaaS):

That’s where the cloud provides online software to users. The software is hosted
on a cloud infrastructure where the user has no control over it. Using a thin client
interface such as a web browser, users can benefit from the software (Mell & Grance,
2011).

2. Platform as a Service (PaaS):

This where the consumer can deploy an application to a cloud infrastructure. The
infrastructure chosen to host the application usually supports the programming language,
services, and tools needed for the program. The consumer can only control his deployed

application configuration (Mell & Grance, 2011).
3. Infrastructure as a Service (laaS):
This is where the consumer is given a limited control on the resources

environment he used to run or deploy a software. Resources such as storage, operating

system and, network components (Mell & Grance, 2011).

2.1.2 Cloud Storage

One of the main uses of the cloud is for data storage where data is stored on
multiple third-party servers. The idea is that data is stored on a virtual server that does
not exist in reality but an alias used to reference virtual space (Wu, Ping, Ge, Wang, &
Fu, 2010). Financially speaking, cloud storage are typically cheaper than physical
storage. Also from a security point of view, data stored on the cloud is secure from
hardware crashes and accidental erasure. So by storing data on the cloud, data is easily

accessed and often at lower cost.

Cloud provides storage services such as Google Drive, Dropbox and Microsoft
SkyDrive. Those services are popularly used for file backup and data archival. Due to
their ease of use, high scalability and accessibility (Bessani et al., 2014). There are three

main models of cloud storage:
1. Public Cloud Storage:

Cloud storage is considered public when cloud resources are available to public
users over the internet and none of these resources is stored in the company's data center.
Meaning that the cloud storage service provider and the company data center are
separate. Examples of public clouds include Amazon Elastic Compute Cloud (EC2),
IBM’s Blue Cloud, Sun Cloud, Google AppEngine and Windows Azure Services
Platform (Venkatesh & Eastaff, 2018).

2. Private Cloud Storage:

When the data center is owned by a single company and the cloud storage
infrastructure is integrated with the company's data center, It's called a private cloud. It's
managed by the cloud storage and maintenance control is given to the company. It's

typically used by large enterprises (Venkatesh & Eastaff, 2018).
3. Hybrid Cloud Storage:
Is a combination of public cloud storage and private cloud storage where data

meant to be accessible publically are stored in the public cloud while critical data are
stored in the company's private cloud (Venkatesh & Eastaff, 2018).

2.1.3 Cloud Security

Cloud security reserved a good cut in the research field. As cloud computing has
been adopted by many technologies it became important to provide an appropriate
solution to face arising security issues. A book (Samarati, di Vimercati, Murugesan, &
Bojanova, 2016) discussed the mechanisms of cloud security regardless of model and

deployment. Network, data and application security were presented.

A study discussed the security breaches cloud services and cloud data exposes to.
The study discussed all logical security aspects regarding confidentiality, integrity, and
availability of data (Rao & Selvamani, 2015). They suggested that encrypting the data
before storing it to the cloud server was a good solution to integrity issues. Hashing file
before uploading it to the cloud and using the hash later to make sure the data on the file

is not altered and integrity is maintained was also suggested.

2.1.4 Hashing Process

Hashing is the process of using some hash function taking data of some size as an
input and outputting a hash value of a fixed-length (Chi & Zhu, 2017). Many hash
functions and methods were proposed. When talking about secure hashing,
Cryptographic secure hashing not only produces a fixed-length hash value but also
secure and irreversible (Chi & Zhu, 2017). MD and SHA families are types of un-keyed

cryptographic hash functions.

Example of SHAs family, SHA256 hash function provides a unique 256-bit value
of the file which ensures that no two different files will produce the same hash value
(Borshack, Thomas, Einav, & Taron, 2016). SHA256 will be used in this thesis. An
example of a keyed hashing algorithm is Message Authentication Code (MAC). The
key is used in producing a message digest. The message digest is produced using a hash
function for the appended to the message. A comparison is held to check integrity
(Sodhi, Gaba, & Technology, 2018). Figure 2-2 shows different secure hash algorithms
of the SHA family and their properties (Dang, 2015).

Algorithm Message Size Block Size Word Size Message Digest Size

(bits) (bits) (bits) (bits)
SHA-1 <™ 512 32 160
SHA-224 <2 512 32 224
SHA-256 <% 512 32 256
SHA-384 <2 1024 64 384
SHA-512 <! 1024 64 512
SHA-512/224 <2'® 1024 64 224
SHA-512/256 <2 1024 64 256

Figure 2. 2: Different Secure Hashing Algorithms
(Dang, 2015)

2.1.5 Integrity Violation Detection

Data integrity protection means keeping data safe from unauthorized modification.
Remote cloud servers are used to store outsourced data, but these servers might be
insecure and unreliable. The integrity of outsourced data becomes a concern due to
loosing full physical control over the outsourced data (Aldossary & Allen, 2016). For
those reasons keeping data integrity and detecting any integrity violation is a necessity.
Normally data owner or a third party can perform an integrity check on the data
(Aldossary & Allen, 2016). Many techniques and methods were conducted under the
name of integrity violation detection. Some of these researches used the whole file to
verify integrity and others verified it based on randomly chosen blocks of data (Zafar et
al., 2017).

2.1.6 Error Control Codes

The idea of computing hash value for each row and each column of data was
inspired from Longitudinal Redundancy Check (LRC) and Transverse Redundancy
Check (TRC) Error correction code algorithms. LRC is a horizontal redundancy check
applied to a stream of data bits or a message. LRC breaks the data into words of a fixed
number of bits and computes XOR operation of the words together. The result of LRC is
appended to the data word and sent to the receiver. The receiver then breaks the received
message into words including the LRC appended value and performs XOR. If the result
is all zeroes, then the integrity of the message is not violated and no error occurred.

LRC can only detect if an error occurred but cannot correct that error. For the purpose of

10

correcting the error, TRC was combined with LRC method. TRC is like LRC but is a
vertical redundancy check (Bawaneh, Alkoffash, Algrainy, & Muaidi, 2016). Assuming

that a message was divided into 8-bit words.

Table2. 1: TRC and LRC

Message Words LRC
1 0 1 0 1 1 0 0
0 1 1 1 0 1 1 1
1 1 1 0 0 0 0 1
0 0 0 0 1 1 1 1
TRC 0 0 1 1 0 1 0

If a change occurred on some bit, that means that the value of the corresponding
TRC and LRC has changed and the cross between them LRC and TRC localize the

violated bit. The correction of that bit is by flipping the bit. The proposed model of this
thesis performs Row hash (RH) instead of LRC and column hash (CH) instead of TRC.

The model also works on bytes of data instead of bits. In each cell, there will be a

character, not a bit. The cross between RH and CH will localize the byte with error or

violation.

11

2.2 Related Works
In this section, the previous research’s on detecting file integrity violation are
discussed. The focus is on researches that used hashing as the main method for the

detection of integrity violation.

2.2.1 File Hashing Applications
File hashing was used in many applications other than integrity violations. In this

section, some of the applications are briefly presented.

2.2.1.1 Hash Based Carving

File hashing was used on hash-based carving (Garfinkel & McCarrin, 2015),
which is a technique for finding matching file blocks on media storage. Rather than
whole file hashing, carving was used to find blocks of the file that has been fragmented
or modified. Using MD5 hashing algorithm, hash values for 4KiB file blocks stored on
the database were compared with hash values for 4KiB sectors on storage media. The
fact that MD5 is not collision resistant was not relevant, Regardless was used due to its

speed.

2.2.1.2 File Backup System

Using file hash key, the file is checked if it already has a backup on the backup
system (De Spiegeleer, 2010). Each file to be backed up must have a hash key. The file
is backed up if it’s hash key comparison against two hash key lists results with no

existing backup. One is a local list and the other is central list.

2.2.1.3 Optimize File Reads

Reading a file from the hard disk may require multiple disk access. A research
(Lensing, Meister, & Brinkmann, 2010) used file hash to possibly accessing small file
read in one disk access. The approach computes the expected location of the file by

applying a hash function on the file path.

12

2.2.2 Integrity Violation Detection Techniques
This section discusses the previous schemes that detected violation of integrity on
files shared on the cloud. Schemes based on whole file hash and random block hash are

also discussed.

2.2.2.1 Whole File Hash Integrity Check

Whole file hashing means a need to access the whole file content to determine its
integrity. Usually, whole file hashing is more suitable for small sized files with a few
megabytes (Han, Liu, Chen, & Gu, 2014).

One of the earliest schemes to check the integrity of files saved on the cloud was
using Message authentication code algorithm (MAC). MAC algorithm runs on the client
side, where the client computes the MAC for data file, outsources the file to the cloud
and later downloads the whole file for integrity check. The client compares the MAC
value computed after downloading the file with the one computed before outsourcing the
file. Since calculating the MAC for the file takes a lot of time and consumes more
bandwidths, the author suggested hash value computation instead (Aldossary & Allen,
2016). An ability to detect integrity violation was achieved but determining the violated

content was not considered.

A research (Ora & Pal, 2015) presented a solution to maintain the integrity of data
saved on the cloud. MD5 was used to hash the file and a copy of the hash value is sent to
the data owner for verification purpose later. Similar to the thesis in hand method, the
data is safe if the hash value of the data present on the cloud is matched with the hash
value present at the owner end. Otherwise, integrity was violated. The study managed to
detect integrity violation but no error localization was conducted.

Whole file hashing was used as an indicator of file integrity violation detection. A
thesis (Lulu, 2016) presented a model to check the correctness of data saved on the
cloud. SHA256 was used. The method retrieves the file from the cloud and conduct a

whole file hashing and compares the result with a previous hash value stored on some

13

intermediate database. Error localization was not considered and only a single hash
value was a result of whole file hash.

Another research(Luo & Bai, 2011) proposed a protocol for data integrity check of
data saved on a remote server. The protocol is based on HLAs and RSA signature. The

cloud server runs a generation proof to proof data storage correctness.

2.2.2.2 Random-Data Selection Based Integrity Check

The schemes proposed in this section focus on choosing random blocks of data to
verify the integrity of the file. Usually, these methods are applied on large sized files
(Ateniese, Di Pietro, Mancini, & Tsudik, 2008). The techniques explained in this section
vary between Proofs of Retrievability (POR) and Proofs of Possession (POS). POR and
POS focus on generating proofs for a storage provider to check the integrity of clients
data without downloading data (Zhu, Hu, Ahn, Yu, & systems, 2012).

Proof of integrity schemes in which the customer can use to check the correctness
of his data saved on the cloud. Researchers (Kumar & Saxena, 2011) proposed a data
integrity proof scheme based on selecting random bits of some file saved on the cloud.
This method contributed in minimizing the size of the proof and thus reducing the
bandwidth consumption of the network. The method informs the client about the
integrity of his data, but does not step to localize or correct the cause of integrity

violation.

2.2.2.1 Proof of Retrievability (POR)

Proof of Retrievability (POR) technique was used as an integrity verification
scheme in many researches. It's based on a cryptographic formula where the owner of
data doesn't need a local copy of data in order to achieve integrity instead, its audited
remotely(Xu & Chang, 2012).

2.2.2.1 Proof of Possession (POS)
POS are Proofs that proof if the server still possesses the original data. By which
can be considered as means for remotely checking data integrity without data retrieval

from the server.

14

Proof of Possession (Ateniese et al., 2007) was used to check if the data
outsourced to a third party is still integral. The client uses the system to generate
metadata for the file and tags within the modified file. Tag generation is based on using
a hash function. Since hash values are collision resistant, so are the tags. Using a
challenge generated by the user, the server accesses blocks of data randomly and
generates a proof. Figure 2-3 shows the sequence of proof of position. This research
checks for server possession of data, But does not perform localization or correction of

the blocks that caused tags mismatch.

client generates
metadata (m) and
modifed file (F)

client store 2arver store

(a) Pre-process and store

(1) client generatez a
random challengs A

(2) sarver computes
proof of poesession P

-— 01

(3) chient verifiee
sarver's proof

) El

client store 2arver store

Figure 2. 3: Verify Server Position
(Ateniese et al., 2007)

The authors (Ateniese et al., 2008) proposed a scheme to proof data possession
based on cryptographic hash function. But the lack of randomness on their system made

it possible to deceive data owners (Zhu et al., 2012).

15

2.3 Summary:

This chapter discussed and explained the concepts related to this work. Also, a set

of related works were discussed as summarized in table 2-1. Previous works as shown in

Table 2-1 contributed heavily on the field of research regarding protecting the integrity

of files stored on the cloud. Whether it was whole file hashing or partial file hashing, the

aim was acknowledging if file integrity was preserved or have been violated. Means of

localizing the violations and correcting them was not considered. The research in hand

aims to develop an integrity detection model empowered with the ability to localize and

correct violations. Table 2.2 summarizes the related works.

Data Security and
Integrity (Ora &
Pal, 2015)

A Model to Detect
the Integrity
Violation (Lulu,
2016)

Data integrity
proofs in cloud
storage(Kumar &
Saxena, 2011)

Table2.2 : Summarization of the related work

MD5 was used to hash the
file and a copy of the hash
value is sent to the data
owner for verification

purpose later.

The method retrieves file
from the cloud and conduct a
whole file hashing and
compares the result with a
previous hash value stored on
some intermediate database
.SHA256 was used.

Researchers proposed a data
integrity proof scheme based
on selecting random bits of

some file saved on the cloud.

16

Data owner verifies the

integrity of the file.

Experiments results
display that the method
was able to determine
if a violation of

integrity occurred.

This method
contributed in
minimizing the size of
the proof and thus
reducing the bandwidth
consumption of the

The study managed to
detect integrity
violation but no error
localization was

conducted.

Error localization was
not considered and
only a single hash

value was a result of

whole file hash.

Error localization and
correction was not

considered.

17

Chapter 3
Proposed Model

Chapter 3: Proposed Model

3.1 Overview

This chapter presents and discusses the proposed model of the thesis in hand. The
research presents a model that checks for integrity violation on shared files. When the
integrity of a file shared on the cloud is reported to be violated, a localization and
correction for those violations are conducted. The research aims to state the localized
violations and correct them. Localization and Correction processes are based on
comparison of hash values computed for file before sharing on the cloud with ones
computed when an integrity check is requested. The proposed model has the following

modules:

1. File Processing, Violation Localization and Violation Correction are the main
modules called upon the request of an integrity check. Executing the modules
means the file was reported to be violated.

2. File Processing Module means constructing a row matrix from file contents
where each row and column will lead to a hash value. The hash values are used
to detect the violated rows or columns which will later lead to procedures to
localize and correct the violated character. Three lists are a result of this module,
one for row hash values , the second for column hash values and the last contains
the characters occurred on file content.

3. Violation Localization Module attempts to specify the location or index of
characters that caused integrity violation. The index is a combination of row
number and column number. A change of hash value for the corresponding row
or column puts the index in a list of localized violated indexes.

4. Violation Correction Module conducts a correction process on the list of
localized indexes for the violated characters. Looping over a predefined list of
characters, the character that leads the changed hash value of the row or column
to match the original hash is the correct character.

18

The model gains its ability to localize the violated characters from the set of results
produced from file processing module. Applying file processing on the file before and
after outsourcing it to the cloud hands sets of before and after hash values to the

localization module.

The localization module contributes on specifying and localizing the exact
characters in the file that caused file integrity to be violated. This can be achieved by
comparing every one of the corresponding hash values computed for file when file
processing step was performed. Not only localizing, but correcting the violated character
is also presented. The model also provides the user with a downloadable version of the

file containing the corrected content.

3.2 System Architecture
As shown in Figure 3-1, the presented model consists mainly of three modules :

file processing , violation localization and violation correction modules.

File Processing Vdolation Localization
Module Module

Figure 3. 1: Main modules

VAolation Correction
Module

1- File Processing: process the file content into a row-column matrix which will be
used on creating the row and column hash values for the file matrix.

2- Violation Localization: to localize the index of violation or error that lead to a
change in some hash value.

3- Violation Correction: to correct the violations localized from the previous

localization module.

The three modules are called upon two system procedures: Save file data and

Check file integrity. To save file data only file processing module is called. However, all

19

the three modules are called when a request to check the integrity of shared file whose
data was once saved on the system.

3.3 System Procedures

The proposed modules are executed during two main procedures: Save File Data
and Check File Integrity Procedures. Figure 3.2 shows saving file data system
procedure.

Success or Fail [
Message

i (I | i
[[[
] LI | —]
1 _—na website 11 |Content Extraction -----»| mmm } ------ r-» File Properties ----; i
1 E ! 1] | []
@ _’: -I : : A : 1:‘- . : :
- | 1 l_'__:‘ :
] 1] 1 . 1 |]
Data Preperation --;-» SeiofFiles |----
User : save file Data ke :_:ﬂ : : Ot Fies Paths :
1 lick 1 T e e e e e = - - ! 1
1 Clic 1 1 ‘ i
. upload [| : —
1 [Processing Module P » > ['
X Vot v,
i [[
' o Response .
1 T 1 i
\ o i

__

Figure 3. 2: Save File Data system procedure
3.3.1 Save File Data Procedure

On the server side , the system receives a file from the client, that represents the

file to be processed before being shared on the cloud.

As shown on Figure 3-2, this procedure consists of three processes and the File

Processing module. Each are explained as follows:

3.3.1.1 Content Extraction Process

To prepare the file for the processing module, content extraction process prepares
file contents, number of lines and maximum characters in line. Contents of the file are
extracted as lines and stored into array. The size of the array is the number of file lines .

The maximum characters in line is the value of the line with the most characters.

20

3.3.1.2 Processing Module

After content extraction, the next step is to call the processing module. The
processing module will be explained in details in section 3.4.1. (See Figure 3-4 and
Figure 3-5 section 3.4.1). At the end of the processing module, the actual output is
arrays of hash values. These arrays are interpreted according to the request of the user.
At the request of saving data, the arrays are saved into files. File paths are stored into
database and actual files are saved to a storage system. At the request of check file
integrity, the arrays are dealt with as arrays. At the current system procedure, the arrays

are file metadata to be used later when check integrity of file is requested.

3.3.1.3 File Properties Process

Represent the File Name , Number Of Lines , Maximum Line Length and File
Hash. These properties are stored into the data base and play a major role when retrieved
from data base at the check file integrity procedure.

1. File Name Property: the name of the file stored on database is unique. Every
user must remember the name of the file when he requests integrity check.

2. File Hash Property: prevents unnecessary computation on the second file to be
checked. Meaning that if the hash value for the file to be checked matches the
one stored on database, Then your file is integral. Otherwise your file’s integrity
is violated and file processing, localization and correction modules will be called.
SHAZ256 is used to create file hash value.

3. Number Of Lines Property: this property defines the limit on number of rows
when creating row matrix as it equals number of lines in the file. Meaning that
when dealing with the file to be checked for integrity, only this number of lines
will be considered. Any lines out of this limit are ignored and discarded from the
checking process.

4. Maximum Line Length: is the value of the line with the most characters. This
property means that every line will be translated into a row of elements with the
maximum line length property. Meaning number of columns in each row is

identical for each line in file.

21

The importance of the last two properties appears when creating row matrix for the
file to check. The file to check row matrix must have the same number of rows and
columns as the row matrix for the saved file. Since the hash values lists results from row
matrix. And since comparing two lists acquires they have the same length. It makes

sense for the two matrices to have equal row and column numbers.

3.3.1.4 Set of Files Process

On this process, a directory under file name is created on a dedicated storage
server. That directory will contain the two files that resulted from file processing
module. These files content is retrieved when performing integrity check. Also the paths
for those files are saved on the database. This process is called only on save data
procedure. Note that no files will be created for the file to be checked for integrity. At
the end of this procedure , a message with the success or fail will be returned to the user

at the client side.

3.3.2 Check Integrity Procedure
Figure 3.3 shows Check Integrity System Procedure. This procedure calls all the
three modules of the proposed approach. It also presents four processes. Each is

explained in the following sub sections:

 Client. Server
g T =T mmmm======== A T T T T T T T T T T T T T e e e e e e e e e e m m e —m—m—— = === =
] Ty Check Integrity
] Ly R
[] Ly im e e e e e
] Iy ! 1
! o websie 11 | Content Extraction |- - -----------ooooooooons . '
— 4 1
Py : ;I . 1, T : Match Properties | | Processing Module :
- B o - v -
User :- : : A : Not Integral Violation :
' -~ upload 1, P : Localization |1
! click ' pas L . ' File Hash : i 1
' dFileName ', | ExiractFile Data ———»m o 4 "' ' Check !
! onDB . 1a o Violation |
1] 1 B 1
i " 1 Integral | Comection |,
i 1 ! 1
] Ty ' _
¥ Download View Response : 1 ; _______________
1 F I e
: Eq—gf- : ; Response<—— OR . Fileisintegral | 1 oo cized Errors |
1 i 1
' S : . A — Corrected Errors |
1 1

| Restored File

__

Figure 3. 3: Check File Integrity system procedure

22

3.3.2.1 Extract File Data

Based on the name of the file stored on data base given By the user, file data is
retrieved from data base. The data includes file hash, number of lines and maximum line
length. The extracted data is used by the file hash process and the match properties

process.

3.3.2.2 File Hash Check

This process checks if the file is integral by comparing two hash values. The hash
value computed for the content from content extraction process with the one retrieved
from data base. When a match found, a message is returned to the client that the file is

integral. Otherwise, the procedure continues to the match properties process.

3.3.2.3 Match Properties

Comparing two arrays requires that the two have the same size. And since arrays
in the proposed approach are a result of some matrix. Then it makes sense for every two
matrices to have the same number of rows and the same number of columns. With that
in mind, matching properties equalizes number of rows by equalizing the number of
lines for the file to be checked with number of lines from database. The same goes for
columns, which is about equalizing the maximum line length property. For example, if
the file to be checked has number of lines m more than the number of lines n for file
saved on the data base, Only the first n of the m lines will be considered. The rest are
ignored and the same philosophy goes when dealing with columns. Violation
Localization and Violation Correction modules will be explained in section 3.4.2 and
3.43.

3.4 Model Modules

The proposed model consists of three modules: File processing module, Violation

localization module and Violation correction module.

23

3.4.1 File Processing Module

File processing is about giving files used by the proposed model a similar
structure. Having similarity in structure leads to having similarity at the size or length of
the set of results. The set of results are mainly arrays. And a known fact in the
programming world, comparing two arrays means they should have the same length.
The Processing module will lead to three results for each file processed by the
processing module. These three results are : Row Hash Values, Column Hash Values
and List of Characters. File processing is held twice for the file, once before sharing the
file. And the other after sharing the file and requesting integrity check on the file. Note
that List of characters is only needed before sharing the file. Processing the file goes
through two stages explained as follows: Stage One , is about creating the row matrix
from file content. Stage Two is about using the row matrix constructed at stage one in

computing row hash values as well as column hash values.

3.4.1.1 File Processing Stages One

Stage one of file processing is about creating the row matrix from file contents.
The process of creating a row matrix from the content of the file is considered as the
seed for the rest of file processing module. Figure 3-4 shows the first stage of file

processing in which the following steps are performed:

Read the contents of the uploaded file as a set of lines.

Initialize an empty row matrix, where
e Number of rows equals the number of lines in the file.
e Number of columns equals the length of the line with maximum number
of characters.
- All rows in the matrix will have the same number of columns.
- Fill each row columns with the corresponding line characters.
- After reaching end of line , fill the remaining empty columns with an empty

string.

24

. Lines : filelines
Siart — Input : upload file ——» Get File Content ———» n:num_of_lines
. m: max_line_length

l

A |«— Lines as : rowMatrix[n][m] —«—— Create Row Matrix

-

-

Figure 3. 4: First stage of file processing

This stage is about being able to index each character in the file by its row and
column number. This will help in localizing the index of violation. That is since the
violated character changes the hash value for the row and column it locates in. The

pseudo code for creating the row matrix is shown right below.
e Create Row Matrix

Suppose a set of lines [LO , L1, L2 ,..., Ln] which represent the lines of a file
uploaded by the user for processing, n is the number of lines, and m is the length of the

line with maximum characters in line among the given lines :

1. First, define an empty matrix that will contain all the characters in the file. Every
line will occupy a row in the matrix and all rows will have the same length. Also an
empty character is defined.

2. Second , loop on every line in L and get line characters and put them in the current
index of the row matrix. At the end of the characters in the line, fill the rest of the
empty indexes at the current row with the defined empty string char.

3. After looping on all the lines, the row matrix is filled with the lines characters and
returned to be used on stage two. Note that the rows in the row matrix define the

lines and the number of columns is identical for every row.

25

Algorithm 1 Creating the row matrix from file content

1. Input : Array of file lines extracted from the uploaded file L[Lo L;, L2,..., Ln]
, and
n : number of lines
m : maximum characters in line
2. Output : Row matrix of size n X m where each element in the matrix is a
character and each line allocates in an index n of the matrix.

3. x=0

4. char =null

5. rowMatrix = array

6. for(r=0ton)do

7. {

8. line = L[r]

9. end = size of(line)
10. for(c=0 to m) do
11. {

12. if (X <end) then
13. {

14, char = line[x]
15. X=x+1

16. }

17. end if

18. rowMatrix[r][c] = char
19. }

20. end for

21. x=0

22. }

23. end for

24. return rowMatrix

By the end of stage one of file processing, a row matrix that represents the file
characters and empty character filling results. Stage two will use the resulting row

matrix as explained in section (3.4.1.2).

26

3.4.1.2 File Processing Stages Two

The created row matrix is used in creating row hash list , column matrix which
will lead to column hash list and list of characters array. As shown in Figure 3-5, Row
hash is an array that contains the hash values for every row in the row matrix. Column
hash is an array that contains the hash values for every column in the column matrix.
Finally the arrays of hash values are saved into separate files on a dedicated server and
the paths for those files will be saved on the database for use at the request of integrity

check.

A A A
) Create List of
Create Row Hash Create Column Matrix CEEnET
rowHash as : Array[n] columnMatrix as : Array[mj[n] listOfChar as : Array

l Create Column Hash l
Save Array to File ¢ Save Array to File

'L ColumnHash as : Array[m] 'L
rowHash Text File listOfChar Text File

v

l Save Array to File l

B l B

columnHash Text File

!

B

-

y fflle NUT - :' =Y
B — 3« ?9 End |
Print Error Message j

Figure 3. 5: Second Stage of File Processing

27

e Creating the Column Matrix

Creating the column matrix is simply the process of filling every index m X n with
the element that exists at index n X m at the row matrix. By the end of this process,
column matrix will have m columns. The number of column at the row matrix will equal

the maximum line length among the file lines.

Algorithm 2 Creating column matrix

=

Input : row matrix of size n X m
Output : column matrix of size m X n where each element in the matrix is a
characterand each column allocates in an index m of the matrix.

no

3. columnMatrix = array

4. for(r=0to m)do

5 {

6. for(c=0ton) do

7. {

8. columnMatrix[r][c] = rowMatrix[c][r]
9. }

10. end for

11. }

12. end for

13. return columnMatrix

As the proposed approach depends on comparing hash values in order to detect
integrity violation of file and to localize these violations. Choosing appropriate hash
function and a secure one is taken into consideration. As shown in Figure 3-6 , array of

element will lead to an array of hash values. SHA256 hash function is used.

{ A ‘1
1 Array of Elements P——}HL' Hash Funetion P—}l Array of Hash Values

NP Z2AN

e R

Figure 3. 6: Apply hash function

28

Figure 3-5 also show creation of list of characters.. At the end of file processing

module, every file must have three arrays :

1. Row Hash Values : Is defined as a list of hash values RH [rhg, rhy , rha,..., rhy] , rh
as in row hash, where each hash value is a result of applying some hash function on
the content of every row inside the Row matrix R [ro, 1, 2 yeeeesy], I @S in row.
Row content is concatenated into a string and hashed using the chosen hash function.

See Figure 3-7.

n Rows n Haszh Values

I:?l _l hash |
r2 | E—

Figure 3. 7: Row hash values

2. Column Hash Values : Is defined as a list of hash values CH [chy, ch; , chy,,
chm] where each hash value is a result of applying a hash function on the content of
every column in Column matrix C [Co, C1 ,Cps...., €m]. CoOntent of every column is

concatenated into a string and hashed using the chosen hash function. See Figure 3-8.

m Columns m Hash Values
ch c1 c2
11 1
_l hash I
| [1]
Row matrix Column Hash Matrix

Figure 3. 8: Column hash values
2. List of Characters: That is defined as a list contains all the characters on the row
matrix without duplication. Every character in that list is a potential correct character
for the violated character. The list is retrieved from row matrix elements and is used

at the violation correction module.

29

The process of creating files is only necessary when saving data for the file on the
database and are extracted when an integrity check on that file is requested. Note that
file processing is also called when performing integrity check. However, no files are

created and checking is performed on the resulting arrays directly.

3.4.2 Violation Localization Module

By Violation localization, the intent is to determine the character that caused the
original hash value for both row and column it locates on to change. Then the index of
that character is the index that caused the violation. The localization module of this

model is accurate under three assumptions:

a- First Assumption:
e The change in the row hash can be due to multiple character change but,
e The change in the column hash is only due to one character change.

b- Second Assumption:
e The change in the column hash can be due to multiple character change

but,
e The change in the row hash is only due to one character change.

c- Third Assumption :
e The change in both row hash and column hash is due to one character
change and,

e No two characters locate in the same row or column or in the same index.

The localization module is the module that results with a set of localized indexes

of the violations that occurred on the file. These indexes are then passed to the
correction module and dealt with so that all violations are cleared. In the proposed
model, localization is done throw two stages: First, localizing the violated rows and
columns. Second, localizing the violations indexes. Figures 3-9 and 3-10 show the two

stages of localization.

3.4.2.1 Localization Stage one : Localize Violated Rows and Columns
Figure 3.9 shows the first stage of localization. The process takes four parameters

as input: Two-row hash arrays and Two-column hash arrays. RH [rh1, rh2, rh3,,

30

rhn] as for row hash values retrieved from database and RH* [rh*1, rh*2, rh*3,,rh*n]
as for row hash values computed at the instance of check request. CH [chO, chl, ch2,
...., chm] as for column hash retrieved from database and CH* [ch*0, ch*1, ch*2,,

ch*m] as for column hash values computed at the instance of check request.

RH , RH* - row hash values arrays
CH , CH*: column hash values arrays

!

Compare RH with RH*
Compare CH with CH*

!

Return_Row : Array
Return_Column : Array

(End
e _d

S

Figure 3. 9: Localize Violated Rows and Columns

The output of the process shown in Figure 3-13 is a result of applying a built-in
function on every two corresponding arrays. The applied function compares RH and
RH* elements and returns an array called Return_Row. And compares CH with CH*
elements and returns an array called Return_Column. Whenever two elements on a
given two arrays mismatch, their corresponding index is pushed and saved in a result
array. Meaning that Return_Row array will contain row indexes that imply violated
rows. And Return_Column array will contain column indexes that imply violated

columns.

By the end of this process, the violated rows and columns are determined and all is
needed is to determine the indexes of violations. The thought that comes to mind is to
loop over the returned columns for every row and that is it. Meaning that every row

index in the return row array is violated at every column index in the return column

31

array. That is absolutely correct when all of the violations have occurred in one row or in
one column or only one violation is detected. Section 3.4.2.2 illustrates the second stage

of localization: localizing violations indexes.

3.4.2.2 Localization Stage Two: Localizing the Violation indexes

Figure 3-10 shows the second stage in the localization module. To determine the
violation indexes, a loop over the Return_Row and Return_Column arrays will get
that done. The index is described as (row , column), which is the location of the
violation. For an index to take place as violated, it means that the hash value for the row
or the column it belongs to has changed. In another say, it mismatched the row hash

value retrieved from the saved file.

L No |
i B P
§ Start)
- / e e
ﬁ—/ < y<loop e—
Return_Row : array l Yes
Reiurn_Column : array
i column = Return_Column[y]
x=0
size = sizeOf (Return_Row)
L index = (row , column)
array_push (Indexes , index)
A '
x y=y+1
No 7 N
————<_ x=size >
~ X = x+1 «
I Yes
row = Return_Row[x] i
A
v
y=0 —
loop = sizeQf (Return_Column) Indexes - array of P Ena \
localized indexes \\-h_ﬂ____,,/’}

T

Figure 3. 10: Localizing the Violation Indexes

32

The second stage of localization will return an array that contains the localized

indexes of violations.

Localized Indexes Array :

Implies all the indexes that were localized as violations. To be more specific,
every row at return row array from stage one of localization may have a set of indexes.
This set is the set of violated characters that will be corrected for that row. The indexes
are a result of a cross between every value from the Return_Row with all the values
from the Return_Column. Table 3-1 shows a small demonstration of the crossing.

Table 3. 1: Localization Indexes

Return_Row Return_Column Indexes |
2 0 (2,0) (2,1) (2,2)
3 1 (3,0) (31) (32
5 4 (50) (51) (52

By the end of the second stage of violation localization module, the array of

localized indexes is passed to the violation correction module.

3.4.3 Violation Correction Module
Correction is actually about figuring out which character is the one that returns the
row hash and column hash to its original hash value. Figure 3-11, Shows the steps taken

at the Violation Correction Module.

33

! : char = charList[y] rowDiata [column] = char
rowData [column] = char row_Matrix [row][column] = char

- Indexes : array i i

- row_Matrix
=L T - rh = origRowHash A
¥ from file
x=0 - th* = modRowHash =

hash of rowData

size = sizef(indexs)

L _—

< X< 5ize B - ch = origColumnHash : B — End)
from file .
Yes - ¢h*= modColumnHash
=hash of columnData
index =Indexes [x] ¢
X=x+1 row = index0]
column = index[1]
T rowData = row_Matrix] row] if rh==rh* Yes
Il
4, ch==ch*
A y=0
list = 5izeOf(charList)
MNa

y=y+1

Mo e Yas

Figure 3. 11: Violation Correction Module

Figure 3.11 is simply explained as follows:
For every localized index x (rx, cx) in indexes array:
Given :

- The violated character value at index x from row matrix : violated
character vc.

- The correct row hash value rh for the index at row rx and the correct
column hash value ch for the index at column cx.

- The list of characters that are possibly to correct the violation.
Do the following :
For every character at the list Lc :

- Replace the violated character at index x in the row matrix with Lc.

- Compute the new row hash rh* and column hash ch*.

34

- If the hash computed ch* equals the correct hash ch or if the hash
computed rh* equals the correct hash rh, then

- Then character Lc is the correction of the violated character vc.

- Modify the character at the row matrix index X , so that it becomes the
character Lc instead of vc.

- Modify the character at the row matrix index x , so that it becomes the
character Lc instead of vc.

By the end of the correction violation model, all the violations are corrected and

the row matrix is modified with the correct characters.

3.4.4 Finishing Procedures
The finishing procedures of the model aim to give extra assurance to the user of

the model about results accuracy.

The procedures include:
- Generate a new content from the modified row matrix and save to a
downloadable file for the user.

- Check if the hash value of the downloadable file matches the original one on the

database. If matched, display assurance message.

35

3.5 Model Interface

Figure 3-12 shows a snapshot of the model interfaces. Each interface is explained

one at a time.

| Check If Integral \

Figure 3. 12: Snapshot of the proposed system

Figure 3-12 shows three interfaces of the model. Starting from the left, the
interface shows the home page of the system website. The second interface opens when
the user clicks on the save file data button to process the file and save its data on the
database. Finally, the last interface opens when the user clicks on the check file integrity
button. File processing, localization and correction modules are called on this interface.

Figure 3-13 shows the expected result when the violation is localized and
corrected. Each localized and corrected character is referred to by its row and column

indexes.

36

Row Index Column Index Localizediviolation Row Index Column Index Corrected Violation

a @

a 1

Figure 3. 13: Expected result snapshot
Figure 3-14 shows the original data restored for the violated row. Every row that
was detected by the proposed approach to be violated, will be restored and feedback is

given to the user.

Restored Row Index Original Row Data -
- Information
1 Information Technology
2 Information Technology -

Figure 3. 14: Restored violated row
A downloadable copy of the checked file will be available for the user. The given
file is modified with corrected characters and provided for the user to download. Figure

3-15 shows a snapshot of the downloadable file.

Download Original Content

RestoredFileContents.txt

The Restored File Hash Value Matches The One on The Database

Figure 3. 15: Restored file
The message shown in Figure 3-15 is based on a test result of hash value
comparison. The hash values are a result of the following steps :

e The row matrix constructed for the file to check is modified with every corrected

character.
o After all the violations are corrected, the content of the row matrix is imploded as

a string and hashed with a hash256 algorithm.

37

e The resulting hash value is compared with the original hash value for the file
retrieved from the database. If they match, then the message ‘The Restored File
Hash Value Matches The One on The Database’ is displayed.

e The message is the assurance of the model effectiveness.

3.6 Summary

This chapter presented the proposed model of this thesis. The three modules
composing the model were also presented. Also, the procedures and the interfaces of the
model were discussed.

File processing module prepares file content as a row-column matrix in order to
facilitate the indexing of each character in the file. This module will be used on the
original file before outsourcing it to the cloud as well as the file needed to check for
integrity. Each time it’s used a set of hash values for file rows and file column are
produced. Those will be used upon localizing the violations. Violation localization
module is about comparing the row hash values arrays to detect the violated rows. The
same will be done for the column hash values. This module results in a set of violated
indexes. Violation correction module takes the list of violated indexes and replaces the
violated character at the violated index with another character. The character that leads
the violated row hash value to match the original one, is the correct character. This
module will applied until all the violations are corrected. The next chapter shows the
experiments held to test the model. It also clarifies the limitations on violations indexes

precisely.

38

Chapter 4

Experiments and Results
Evaluation

Chapter 4: Experiments and Evaluations

4.1 Overview

Building an integrity check model demands having metadata about the original
data. The metadata is usually produced from a pre-processing procedures that are
applied to the original data. Design challenges such as accuracy , the size of metadata
and the execution time of the model are evaluated in this chapter.

Testing and evaluation of the proposed model are held in this chapter. The
measures taken in evaluating the proposed model are discussed. The effectiveness and
efficiency of the model will be evaluated by several experiments and result’s discussion.
Moreover, the testing of the model shall declare the limitation of the model precisely.
Knowing the limits of this work will be beneficial in introducing enhancements and

future ideas.

4.2 Evaluation Objective

The objective of the evaluation is to test the accuracy of model results and discuss
other evaluation aspects such as computation efficiency and storage efficiency. The
accuracy of the model is evaluated with the models objective in mind. If the model is
proved by the results and testing to be able to detect, localize and correct all of the
violations. Then the model is considered to be highly accurate.

4.3 Aspects of Evaluation
Evaluating the model depends on assessing how much the designed model meets
its objective. As mentioned throughout the thesis so far, the proposed model aims to
achieve three main goals:
- Check if the integrity of an outsourced file has been violated or not.
- Localize the source of violation or in other words the index of violated
character.
- Correct all the localized violations if possible.

The three goals of the model are evaluated within the following aspects:

39

4.3.1 Accuracy

The accuracy of the model is considered high, if:

- The model can localize the indexes of violations.
- The model can correct localized violations.
As evidence of the accuracy of the results, an assurance message will be displayed
to the model user. The message means that the hash value of the restored file with the
corrected localized violation matches the original one that was once saved on the

database.

4.3.2 Computation Efficiency
Computation efficiency is about the computation time it takes the proposed model
to execute its tasks. Since the proposed model introduces three modules, the time
executing every module has an effect on the computation time of the model. The factors
that affect the computation time of the proposed model are :
1- Save File Data time which includes :
- Time for processing the file before outsourcing to the cloud, which is:
Time for generating metadata about the original data which are row hash
file and column hash file and list of characters file.
2- Check File Integrity time which includes :
- Time for processing the file to check.
- Time to Retrieve the data saved on the database.
- Time to localize the violations.
- Time to correct the violation.
Since the time to check file integrity calls all the three modules of the model, it
shall be measured and evaluated. However, the time to save file data calls one module,
thus time is predicted to be small. So the time it takes the model to check file integrity

and respond to the user matters the most.

40

4.3.3 Computation Storage

For the proposed model to be able to perform integrity check at user request, the
system or the model must have some metadata. The metadata is data about the original
data that needs to be stored on a storage system. In this model, the metadata is:

- Row Hash values file.
- Column Hash values file.
- List of Characters file.

The size of metadata is supposed to be smaller than the size of the original data.
Otherwise, the need for extra storage for the metadata other than the one for the original
data can be an issue. Storing hash values inside files tend to take a lot of storage and can
be a problem in the model. Tackling this issue and why it was considered an issue, will

be discussed throughout results and discussions.

4.4 List of Experiments

Several experiments were conducted as the key factors to clarify the model’s
ability to represent its objectives in full. The experiments focused on localizing and
correcting violations on four experiments. Also, they highlight the limits of the model

regarding violation index :

Table 4. 1: List of Experiments Applied to Test the Model

Experiment))) o
Experiment Title Experiment Description
Number
Experiment #1 One violation on file File has one character change
] Multiple violations on one . .
Experiment #2 File has multiple character change on one row only.
row only
Multiple violations on one
Experiment #3 File has multiple character change on one column only
column only
) Multiple violations on File has multiple violations where the violations do not
Experiment #4 o))
Distinct locations locate in the same row or column

41

The specified four experiments were chosen because they can guarantee that every
localized violation is corrected. They are also applied under the condition that :

- A change of the file content is actually a replacement process. Meaning that all the
violations that resulted from some original character replacement will be handled
as a violation on its own. However, if a character was added or deleted, then the
characters behind it that locate on the same row will be shifted. Thus, that

character and the shifted characters will all be considered as violations.

4.4.1 Experimental Environment
This section describes the experimental environment used when testing the model

was held. It also explains in details the four experiments described in Table 4.1.

4.4.1.1 Test Environment Properties
The model testing was held on a local machine laptop (DELL). With Windows 10
X64 operating system, Core i7 processor and 6 GB RAM.

PHP 5 was used as a programing language.

4.4.1.2 Data Set

To evaluate the model, a set of files of different sizes were collected manually and
some downloaded from internet websites. The content of files was English characters
and a variety of special characters and numbers. Only the text file type was used to test

the model. Figure 4-1 shows files classification according to size.

> Small (5—100KB)
» Medium (100 KB -1 MB)
> Llarge(1-16 MB)
» Giant (>128 MB)

Figure 4. 1: File Size Classification
(Lulu, 2016).

Based on the classification in Figure 4-1 :

1. 8small files, 7 medium files, 2 large files were used to test this model.

42

2. SHAZ256 hashing algorithm was used to create hash values.
3. Empty lines are filtered from file data.

4.4.1.3 Model Experiments

This section explains in details the four experiments on Table 4-1.

4.4.3.1 Experiment #1: One violation on file

The first experiment was conducted on a file with one violation only. Figure 4-2

shows File original content and highlights the violated character. It also shows the
violated content.

Original Content Violated Content

EmanAhmed| EmanXhmed|

Figure 4. 2: Experiment #1-original and violated content

Based on the data saved for the original content, the model will detect this file as
violated and return the localized and corrected violations as shown in Figure 4-3. The

figure also shows the time it took the model to execute the three modules at the integrity
check request.

Violation Mumber Row Index Column Index Localized Violation
5] a 4 X
Correction Row Index Column Corrected Corrected
MNumber Index Violation Row
8 a a A EmanAhmed
ExecutionTime 8.8834638298614562
Online =

Figure 4. 3: Experiment #1- Localization and Correction

Figure 4-3 is explained as in Table 4.2 :

43

Table 4. 2: Explanation of Figure 4.3 on Experiment #1

Violated Row Violated Column Localized violation index Corrected Violation

0 4 [0,4]:X A

To give extra assurance of the model accuracy, the model displays the message

shown in Figure 4-4 as evidence of correcting all of the detected violation.

Download Original Content

RestoredFileContents.txt

The Restored File Hash Value Matches The One on The Database

Figure 4. 4: Experiment #1- Assurance Message
4.4.3.2 Experiment #2 : Multiple violations on one row only
This experiment shows a file that is violated on multiple locations only on one row

or line. Figure 4-5 shows file original content and violated content.

Original Content Violated Content
1 Eman Ahmed 1 EXan AXmXd
2 Magd Ad el| 2 Magd Ad el|

Figure 4. 5: Experiment #2- original and violated content

When an integrity check request is made , Figure 4-6 shows the returned result.

44

Violation Number Row Index Column Index Localized Violation

8 1 X
e 5 X
e g X
Correction Row Index Column Corrected Corrected
Number Index Violation Row
@ 1 m
@ 5 h
@ 3 e Eman
Ahmed
ExecutionTime @.8016789436348332
Online =
Figure 4. 6: Experiment #2 -Localization and Correction
Figure 4-6 is explained in Table 4.3:
Table 4. 3: Explanation of Figure 4.6 on Experiment #2
Violated Row Violated Column Localized violation index Corrected Violation
0 1 [0,1]:X M
0 6 [0,6]:X H
0 8 [0,8]:X E

Figure 4-7, ensures the model efficiency and accuracy.

Download Original Content

RestoredFileContents.txt

The Restored File Hash Value Matches The One on The Database

Figure 4. 7: Experiment #2- Assurance Message

45

4.4.3.3 Experiment #3 : Multiple violations on one column only
This experiment shows a file that is violated on multiple locations only on one
column. Figure 4-8 shows file original content and violated content.

Original Content Violated Content
1 Eman Ahmed 1 EmXn Ahmed
2 Magd Adel| 2 MaXd Adel|

Figure 4. 8: Experiment #3- original and violated content

When an integrity check request is made , Figure 4-9 shows the returned result.

Violation Number Row Index Column Index Localized Violation
@ a2 2 X
1 1 2 X
Correction Row Index Column Corrected Corrected
MNumber Index Violation Row
] @ 2 a Eman
Ahmed
1 1 2 g Magd Adel

ExecutionTime @.8817858399817334
Online =

Figure 4. 9: Experiment #3- Localization and Correction

Figure 4-9 is explained as in Table 4.4:

Table 4. 4: Explanation of Figure 4.9 on Experiment #3

Violated Row Violated Column Localized violation index Corrected Violation
0 2 [0,2]:X A
1 2 [1,2]:X G

46

4.4.3.4 Experiment #4 : Multiple violations on Distinct Locations

This experiment shows a file that is violated on multiple locations where none of
the violations locate on the same row and on the same column. In other words, the
violation is caused by one character change per row or column. Figure 4-10 shows file

original content and violated content.

Original Content Violated Content
Eman Ahmed EXan Ahmed
Magd Adel Magd Xdel

Figure 4. 10: Experiment #4-original and violated content

When an integrity check request is made, Figure 4-11 shows the returned result

Violation Number Row Index Column Index Localized Violation
a a 1 X
1 a 5 A
2 1 1 a
3 1 5 X
Correction Row Index Column Corrected Corrected
Mumber Index Violation Row
2 a 1 m Eman
Ahmed
1 a 5 A Eman
Ahmed
2 1 1 a
3 1 5 A Magd Adel
ExecutionTime 2.8021517634173584
Online =

Figure 4. 11: Experiment #4- Localization and Correction

47

Besides the localized and corrected violations, the results on Figure 4-11 displays
some values that were not violated in the first place. That is one drawback of the model
at this type of experiment. The actual violations on the file derived from Figure 4-11 are
as in Table 4-5:

Table 4. 5: Explanation of Figure 4.11 on Experiment #4

Violated Row Violated Column Localized violation index Corrected Violation
0 1 [0,1]:X M
1 5 [1,5]:X A

Despite this drawback, the model is able to localize and correct the violations

accurately and the assurance message is displayed in Figure 4-12.

Download Original Content

RestoredFileContents.txt

The Restored File Hash Value Matches The One on The Database

Figure 4. 12: : Experiment #4 -Assurance Message

The question that comes to mind, why this drawback happens? That is because the
only way to perform localization based on the metadata about the file is as previously
explained in section 3.4.2 Figure 3-11. The solution suggested for solving this drawback
is:

Extra metadata is needed about the columns of each row. That will enable the
localization to refer every column in the list of violated columns to its own row. Which
the proposed model does not have. Table 4-6 shows experiments of the model applied
to different file sizes. The table also shows the execution time and the metadata size for
each file. In all of the experiments in Table 4.6.

1- The model was able to correct all the localized violations.

2- Execution time was measured at 25 violations in each checked file.

48

Table 4. 6: Model Tested on Different File Sizes in Which All the Localized Violation Were

Corrected
1 2 3 4 5 6 7 8 9
Metadata Metadata
Row Column
File Size # Size in Execution size to
Rows Hash File | Hash File
(KB) Columns . . Total Time (us) original
Size (KB) | Size (KB) .
(KB) data size
1 5 38 148 3 10 13 0.0174 2.60
2 15 166 148 11 10 21 0.0234 1.40
3 30 332 148 22 10 32 0.0457 1.06
4 40 422 148 27 10 37 0.0480 0.925
5 52 528 148 34 10 44 0.0540 0.846
6 60 664 148 43 10 53 0.0636 0.883
7 80 844 148 54 10 64 0.0695 0.800
8 100 1052 148 67 10 77 0.1036 0.770
9 200 2104 148 134 10 144 0.1794 0.720
10 300 3156 148 201 10 211 0.2761 0.703
11 400 4208 148 268 10 278 0.3786 0.695
12 500 5257 274 334 18 352 0.6685 0.694
13 600 6262 274 398 18 416 0.7920 0.693
14 700 7314 274 465 18 483 0.9244 0.690
15 800 8366 274 532 18 550 1.0278 0.687
16 1000 14374 146 913 10 923 1.0674 0.923
17 2000 30247 146 1920 10 1930 2.2899 0.965

49

Based on the results in Table 4-6, Figure 4-13 shows the percentage of metadata
size from the original file size. As seen on the chart in Figure 4-13:
- At the original file size of 40 KB: The size of metadata starts to be

smaller than the original file size.

Metadata Size to Original Size

2.5 A
.1
15

1 == Metadata Size to
Original Size

0.5

0'||||||||||||||||||

RS IR
Q" O O O O O O
'\/b“OQ,,)Q(,)Q,\Q\/QQ

Figure 4. 13: Percentage of metadata size to original data size

Figure 4-14 shows the execution time of the files used in Table 4-6. The maximum

execution time was 2.5 ps when a file of one megabyte was used.

Execution Time (us)

2 !
/

1 —&— Execution Time
05 (us)

L L LLee
S . .S
'\,vtoc,,p%g,\e,@q

2.5

Figure 4. 14: Model execution time for files in Table 4-6

50

4.5 Model Evaluation

Aspects of evaluation as discussed in section 4.3 are three :

4.5.1 Accuracy Evaluation
The accuracy of the proposed model is measured by three factors:
1- Model instantly detects if file integrity was violated.
- Within the model limitations, the model is able to :
2- Localize the indexes of violations.
3- Correct all the localized violations.

Table 4-6 shows the files that were tested by the model. All the violations that
were discovered on the files were localized and corrected. This concludes that the
model’s accuracy is high within the four experiments criteria. The problem is that at
experiment four on section 4.4.3.4, non-violated characters besides the violated ones are
localized as violations. This problem is not considered serious. Since the model keeps
the non-violated characters as they are and only corrects the violated ones. So, the
overall result proves that the model is highly accurate.

4.5.2 Computation Storage
Computation storage is about the size of extra storage needed other than the

original data. The extra storage mentioned is what makes the model perform its tasks
accurately. That is row hash file and column hash file sizes are the metadata of the
original data for the file. And extra storage is needed for this metadata. Column eight of
Table 4-6 shows the size of the metadata needed for each file. Comparing column two
which is the file size with column 7, Several notices are noticed.

- It’s clear that the size of metadata stays bigger than the size of the

original data until the file with size 40 KB.
- Starting with 40 KB file, the size of metadata starts to decrease slightly.
- Computing the average on column 9, it shows that the metadata size is

0.944 less than the original data size.

51

4.5.3 Computation Efficiency

Computation efficiency is about the time it takes the model to localize and correct
the violations on the file. Also, the time for processing the file to check is included.

The execution time is less than one microseconds for files under 100 KB in size.
And increases gradually until it reaches 1.05 microseconds for a file with 1000 KB size.
Execution time for the tested files is shown in column 8 of Table 4-6 with an average of
0.4723 microseconds.

4.6 Summary

Experiments to test the performance and efficiency of the model were presented in
this chapter. Within the limitations of the model, model evaluation evolved around three
aspects: Accuracy of results, computation efficiency, and computation storage. The next
chapter presents Two optimization approaches for the proposed model. The proposed
model accurately localizes and corrects violations within limitations previously
explained in four experiments on section 4.4. The accuracy of the model becomes a
serious issue and the model becomes inefficient to correct the violations on this case :

When multiple violations come to locate on the same row and column as shown in
Figure 4-15.

Original Content Violated Content
EmanAhmed XGanAhmed
Magdidel AXgdadel
AdelMagd AdelMagd
AhmedMagd AhmedMagd|

Figure 4. 15: Multiple Violations Cross

52

Vioclation MNumber Row Index Column Index Localized Vioclation

@ B 8 X
1 B 1 G
2 1 8 A
3 1 1 X
Correction Row Index Column Corrected Corrected
Humber Index Violation Row
ExecutionTime 8.80382586370544943
Online =

Figure 4. 16: Localization but No Correction
As seen in Figure 4-16, the model was able to localize the violations but none of
them was corrected. This issue is the reason for presenting the two optimization models

in chapter 5.
The optimization was based on discarding the limitation of the model regarding
violations. So the expected from the two optimization approaches is, being able to

localize and correct all the violations even if they locate on the same row or column.

53

Chapter 5
Model Optimization

Chapter 5: Model Optimization

5.1 Overview

This chapter is divided into two sections that present the two optimization models.
Each section explains the modifications made on the previous model and discusses the
results. The main purpose of the optimization is to provide a new model that is able to
localize and correct all violations regardless of their position or index. The good

outcomes and the drawbacks of each optimization model are also discussed.

5.2 First optimization Model : Sub Row Index Addition

If the model of this thesis was to have a file where multiple violations locate on the
same column and row, Then the correction would not be possible. However, localization
of all the violations with other non-violated characters is a result. See Figure 4-16 on
section 4.6. This approach suggests having another type of metadata other than the row
and column hash values file. The metadata should enable the model to localize only and
only the violated characters. Also, it should correct them all and give an assurance of its
efficiency. The purpose of this data is to be able to refer the violated columns in the
return column list each to its own row. Meaning that data about the characters of each
row is all needed. Let’s call it:

Sub Row Hash Values: Since the localization is done based on localizing the
violated character, having a hash value for every character makes sense. So sub row
hash is an array that contains the hash values of every element in the row matrix. Sub
Row Hash SRH [reh; , rehy, rehs,, reh,«m] is an array that contains the hash values
for the elements in the Row matrix R [rel, re? , re?,, req,«m], where n is the number
of rows, m is the number of columns, re is row element and reh is row element hash.

See Figure 5-1.

54

m=3 -3

hash

Row matrix Sub Row Hash Matrix
n" m= 9 elements

Figure 5. 1: Sub Row Hash Matrix
Let’s take some time analyzing this sub row hash data. Looking at Table 4-6, on
row one with 5 KB file size. The following is noticed:
e 148 columns result with 10 KB in size for column hash file.
e Applying this on 38 rows, sub-row hash for each row results with 38 X 10 = 380
KB file size.

e Moving the extra storage from 13 KB in total to 383 KB for a 5 KB file size.
e Also, moving the extra storage from 37 KB in total to 4,220 KB for a 40 KB file

size.
So to face the big size for extra storage, the suggestion made is as follows:

e Why not store indexes to characters instead of hash values. This will definitely
reduce the size needed to refer each character from 32 (256 bit / 8) Byte to one or
two or three bytes at most.

e Assuming agreement of the suggestion. The indexes to characters are from the
list of characters produced for each file and saved on the database.

e The list of characters is produced from the characters of the its own file when
saved on the database. The order of these characters in the list is constant for the
file it belongs to.

e The list of characters may contain indexes to 128 ASCII English characters. So
the maximum index will occupy three bytes at most. This because indexes to
128 ASCII characters starts from 0 (one-byte) to 127 (three-bytes).

55

Sticking to what was said, This model adds a sub-row Index file to metadata but

only it will contain indexes to characters instead of hash values. This model will be

tested on the same set of files shown in Table 4-6. But first, let’s see how the second

stage of localization will change after the sub row index addition.

5.2.1 First Optimization Model : Localization

./’- .\\\

Start

subRlI | subRI* :
2 Arrays of sub row index

i

Get Rows whose index
exists in Return_Row

!

subRl | subRI* :
contains only localized rows

!

x=0
row = Return_Row[x]
end = sizeOf(Return_Column)
localized_Indexes = array
cormrect_index_RC = array

p - o
4b< % < end %
"
\(Yes

v

temp1 = subRl [x]
temp2 = subRI® [x]

|

col=0
y = sizeOfitemp1[x])

temp1[col] != temp2[col]
&

ol exisis in Return Colum

Localized_Indexes - pushirow,col)
correct_index_CR : push{ $temp1[col])

4‘ col += 1 |
| x+—1 <
Retumn : Localization_array FaiaN
- i = 1]
correci_index_RC array —"\illi/

Figure 5. 2: Localizing the Violation in Each Row

Figure 5-2 is explained as follows:

1. Input two sub row index matrices, one retrieved from database subRI and the

other computed at the request for check subRI1*.

56

Deduct the rows of subRI and subRI* so that they only contain the violated rows

whose indexes exists at the return row array from the first stage.

Row index is paired with column index [row][column] and that implies

localized violation index.

Initialize the row variable with an index from return row to apply the second

stage on, Say row = 0.

The main concept of the flow chart is as follows:

a.

f.
g.

Start an outer loop that loops at the size of the return column array from the
first stage.
Loop on every two corresponding rows on the sub row index matrices. As
shown figure 4-11 temp1 and temp2.
Templ: column index values from database [cip , Ci; , Ciz, ..., ciy] elements
are compared with Temp2: column index values computed at check request
[ci*o, ci*y, Ci*;, ..., ci*p], ci for character index.
Now start another loop that loop at the size of templ, which is the variable
that contains the hash values for the current row. The index of the element
currently being compared is the column number.
The condition for localizing the column and pairing it with row currently
being checked :
- If element ciy matches element ci*y , then that character(column) is not
violated. Otherwise, that is a violated column. Say column = 0.

- If the column exists in the return column array from the first stage, then

¢ Violation is localized at index [row][column]

e Push the index say [0][0] at the localization indexes array

e Push the correct hash Templ1[0] from Templ in another array

called correct_char_hash. The purpose of this array will be
explained in a minute.

Loop until all the elements in the current temp are done.
Get the next row from the sub row hash. Repeat from step 5 until all the rows

are processed.

57

By the end of the second stage of violation localization module, two arrays are
passed to Violation Correction module.

1- Localized Indexes Array: previously explained in section 3.4.2 division b.

2- Correct Characters Index Array: those index values are the original index values
that exist in the sub row index matrix retrieved from the database. Now the question
that comes to mind, why prepare those hash values now?.

An answer to that: since the correction process is done only on localized indexes.

And the localized indexes result from looping over the sub row index matrix. To prevent

repeating the loop to get the correct index value for every localized index , it’s saved in

the correct array at the instance of localizing. Using the first optimization approach,

Table 5-1 shows the results of the same set of files used in Table 4-6.

58

Table 5. 1: First Optimization Model Tested on Different File Sizes in Which all Localized
Violations were Corrected

1 2 3 4 5 6 7 8
Metadata
Row Hash Column Sub Row

File Size Size in Execution size to

File Hash File Index File
(KB) . . . Total (KB) Time (ps) original data
Size (KB) Size (KB) Size (KB) .
size

1 5 3 10 12 25 0.0246 5
2 15 11 10 44 65 0.0332 4.33
3 30 22 10 87 119 0.0656 3.966
4 40 27 10 115 152 0.0846 3.8
5 52 34 10 145 189 0.0954 3.634
6 60 43 10 174 227 0.1390 3.783
7 80 54 10 230 294 0.1598 3.675
8 100 67 10 286 363 0.1876 3.630
9 200 134 10 571 715 0.3874 3.575
10 300 201 10 856 1,067 0.5707 3.556
11 400 268 10 1,141 1,419 0.7770 3.547
12 500 334 18 2,073 2,425 1.8631 4.85
13 600 398 18 2,467 2,883 2.2074 4.805
14 700 465 18 2,882 3,365 2.5606 4.807
15 800 532 18 3,296 3,846 2.9689 4.807
16 1000 913 10 3,676 4,599 2.9703 4.599

59

Based on the results in Table 5-1, Figure 5-3 shows the percentage of the metadata
size from the original file size. As seen on the chart on Figure 5-3:

- At all file sizes, the size of metadata is never less than the original file

size.
Metadata size to original data
size

6
5 . W
X M
3 —o— Metadata size to
2 I original data size
1

15 40 60 100 300 500 700 1000

KB KB KB KB KB KB KB KB

Figure 5. 3: Percentage of metadata size to original data size

Figure 5-4 shows the execution time of the files used in Table 5-1. The maximum

execution time was 3 microseconds when a file of one megabyte was used.

Execution Time (us)
3.5

2.5

1.5 / 9— Execution Time

1 (1s)
" M
0 n T T T T T T T T T T T 1

15 40 60 100 300 500 700 1000
KB KB KB KB KB KB KB KB

Figure 5. 4: Model execution time for files on Table 5-1

60

5.2.2 First Optimization Model Discussion

Looking at the last three columns of Table 5-1, the following is noticed:

e Total size for metadata in column 6 is huge compared to the original file size in
column 2.

e Computing the average on the last column, metadata size is 6.64 bigger than the
original data size.

e The execution time on column 7 looks kind of acceptable to process such a huge
amount of metadata. The average execution time of this model equals 0.9434
microseconds.

e The first optimization model is proved to be able to localize and correct every single
violation on the file. So the purpose of optimization is achieved.

Comparing the results of Table 4-6 with the results of Table 5-1. Table 5-2 shows

a comparison for both the original model and the first optimized model.

Table 5. 2: Compare results of original model and first optimization model

Original Model First Optimization Model
Accuracy of Model 100 % accurate 100 % accurate
Average Execution Time 0.4723 us 0.9434 us

Average Metadata Size to Original | 0.944 smaller than original | 6.64 larger than original file
Data Size file size size

The results in Table 5.2 conclude that:

- The first optimization model was able to correct all the localized violations that
were caused by more than one character change. However,

- The original model is faster than the first optimized model.

- The metadata size on the original model is 7 (6.64 / 0.944) times less than the

first optimization model.

61

So in conclusion, the drawbacks of this model surpass its benefits. Such large
metadata size will need extra storage and that will not be encouraging for using this

model.

5.3 Second optimization Model : Read File Content As One Row
The intents on proposing this model were like this: First, optimize the original
model localization and correction to include any position of violation. Second, optimize

the first optimized model from metadata size side or point of view.

This model is as simple as the original model of this thesis, it only differs on the

following:

e There is only one row that represents the whole file content. This implies that:
e Row hash file in not needed. Because the row hash will equal the file
hash.
e The number of columns is the number of characters in the row. This implies
that:
e Column hash file will contain values of the number of columns.
e Also, it will contain indexes to characters, not hash values. The indexes

are from the list of characters as explained in section 5.2.

The only metadata needed for this approach is :

- File hash value and List of characters stored on the database.
- Column Hash file that contains indexes instead of hash values. Stored on
a dedicated server.
Why expect this approach to reduce the size of metadata obtained from the first
optimization approach? Because it avoids adding extra bytes to the original file content,

unlike the first optimization model.

The first optimization model adds extra bytes during the method of constructing the row

matrix;

62

e The first optimization approach fills line characters into a row with the length of
the longest line in the file.

e So, if the line has 3 characters and the row length say 15:

e All of the lines are considered 15 characters long. Based on the example, the first 3
characters are the line characters and the rest 12 are filled with an empty character.

e This method causes the size of metadata to be huge because extra bytes are added
to shorter lines.
Figure 5-5 and Table 5-3 demonstrates the second optimization approach.

Meaning if your file has the content as in Figure 5-5:

Eman Ahmed
Magd Adel]

Figure 5. 5: : File Content

The second optimized approach reads the content on Figure 5-6 as in Table 5-3.

Table 5. 3: Content Translated to One Row

[E[M[a[N|[[A[h|m|e[D|EOL[M[afg|d] [A|d[E[L [EOF]

Table 5-4 shows the results of testing the second optimized approach on the same
data set used in Table 4-6.

63

Table 5. 4: Second Optimization Model Tested on Different File Sizes in Which All The Localized
Violations Were Corrected

1 2 3 4 5 6

4 File Size Colu:ir:eHash Size in Execution Time | Metadata size to
(KB) size (KB) Total (KB) (us) original data size

1 5 12 12 0.0090 24

2 15 34 34 0.0342 2.266

3 30 68 68 0.0414 2.266

4 40 95 95 0.0672 2.375

5 52 120 120 0.0690 2.307

6 60 136 136 0.0721 2.266

7 80 189 189 0.0880 2.362

8 100 237 237 0.1113 2.370

9 200 473 473 0.2218 2.365

10 300 709 709 0.3218 2.363

11 400 946 946 0.4245 2.365

12 500 1,182 1,182 0.6685 2.364

13 600 1,404 1.404 0.6433 2.340

14 700 1,641 1.641 0.7385 2.344

15 800 1,877 1,877 0.8248 2.346

16 1000 2,577 2,577 1.0267 2.577

17 2000 5,420 5,420 2.1865 2.710

Based on the results on Table 5-4, Figure 5-6 shows the percentage of metadata

size from the original file size. As seen on the chart in Figure 5-6:

64

- Atall file sizes, the size of the metadata is never less than the original file
size. It always resides between 2-3 times the size of the original file size.

Metadata size to original data size

2.5

15

—— Metadata size to
1 original data size

0.5

Figure 5. 6: Metadata size to original data size

Figure 5-7 shows the execution time of the files used in Table 5-4. The maximum

execution time was 3 us when a file of one megabyte was used.

Execution Time (us)

== Execution Time (us)

15 40 60 100 300 500 700 1000
KB KB KB KB KB KB KB KB

Figure 5. 7: Model execution time for files on Table 5-1

65

5.3.1 Second Optimization Model Discussion

From Table 5-3, the following is noticed:

- Column 5 shows: Metadata size is within an average of 1.828 larger than
the file size.
- Column 6 shows: Execution time has an average of 0.444 microseconds.
Now, let’s discuss the results in Table 5-3 with the results from Table 4-6 and Table 5-1.

a. First, Second optimized model is compared with the original model is shown in
Table 5-5.

Table 5. 5: Comparison of Second optimization model with the original model

Original Model Second Optimization Model
Accuracy of Model 100 % accurate 100 % accurate
Average Execution Time 0.4723 ps 0.444 ps

Average Metadata Size to Original | 0.944 smaller than original 1.828 larger than original

Data Size file size file size

The results in Table 5-5 are interpreted as follows:

- Second optimization model :
1- Was able to correct the localized violations wherever their index
locates. In this point, it surpassed the original model.
2- Is faster than the original model with an average execution time of

0.444 ps.

3- Metadata size is 1.936 (1.828 / 0.944) in average larger than the
metadata size of the original model.

66

b. Second, Second and first optimized models are compared together in Table 5-6.

Table 5. 6: Comparison of second and first optimization model

Second Optimization Model

First Optimization Model

Accuracy of Model

100 % accurate

100 % accurate

Average Execution Time

0.444 ps

0.9434 us

Average Metadata Size to Original

Data Size

1.828 larger than original

file size

6.64 larger than original file

size

The results on Table 5-6 are interpreted as follows:

- Second optimization model :

4- Was able to correct the localized violations wherever their index

locates. In this point, it surpassed the original model.
5- Twice (0.9434/0.444) as fast as the first optimized model.
6- Metadata size is 3.63 (6.64 / 1.828) in average smaller than the

metadata size of the first optimized model.

5.4 Summary

The optimized models aimed to enhance the original model’s ability of localizing

and correcting violations no matter of violation position or location. The optimization

affected both metadata size as well as the execution time. Discussion of results and

effects were also presented in this chapter. In overall summary, the second optimized

model is the best candidate between the three models from the following aspects:

1- Is able to correct all the violations regardless of their index. In other words, any

localized violation in any index will be corrected accurately.

2- The execution time is faster as the results shown in Table 5-6.

67

Chapter 6

Discussion, Conclusion and
Future Work

Chapter 6: Discussion , Conclusion and Future Work

6.1 Overview
In this chapter, discussion of the three models is held. As well as the conclusion of
the work done to accomplish the purpose of the presented model is given. Also,

suggestions for future work and research are given.

6.2 Discussion of the Three Models

As file sharing over the cloud widely spread, many researchers aimed to build
models for integrity violation detection. Various models were presented only to inform
the file owner if file integrity was violated or not. The model of this thesis not only
detects the violation of file integrity but also accurately localize the violated characters
and corrects them. The contribution of this model can be used as an infrastructure to
localizing and correcting violations in future works.

The evaluation of this model was based on measuring three factors: accuracy,
execution time and metadata size. Table 6-1 shows the results of the proposed model.

The results were conducted on 17 files with 25 violations in each file.

Table 6. 1: Original Model Evaluation

Original Model
Accuracy of Model 100 % accurate according to limitations
Average Execution Time 0.4723 us
Average Metadata Size to Original Data Size 0.944 smaller than original file size

The accuracy of the model is considered high if all the localized violation were
corrected. And the results of the experiments showed the model to be highly accurate.
Let’s not forget that in this model, the index of violation was limited to the indexes
description for four experiments on Table 4-1 on section 4.4.

The execution time of the model to respond to the user must be measured since it’s

an online service. The model was able to convey an approximately small execution time.

68

This is proved by experiments results to be computationally efficient. The average
execution time was 0.4723 microseconds.

As for the extra storage needed for the metadata, it requires the metadata size to be
smaller than the original data size. The model was able to achieve this for files larger
than 40KB. In average, metadata size was 0.944 smaller than the original file size.

Because violation location was limited to limited locations (indexes) explained in
section 4.4, two optimization models were also presented in chapter 6. They aimed to
enhance the original model by including any violation location. The two optimized
models were able to locate and correct violations at any location (index). Table 6-2
shows the results of the three models.

Table 6. 2: Comparison of the three models

Original Model

First Optimization
Model

Second Optimization
Model

Accuracy of Model

100 % accurate within
limited violation

indexes

100 % accurate to all

violation indexes

100 % accurate to all

violation indexes

Average Execution

Time

0.4723 us

0.9434 us

0.444 ys

Average Metadata
Size to Original Data

Size

0.944 smaller than

original file size

6.64 larger than

original file size

1.828 larger than the

original file size

To clarify the results shown in Table 6-2, Figure 6-1, Figure 6-2 And Figure 6- show

charts of the results.

69

B Accuracy of Model

B Average Execution Time
(us)

Average Metadata Size
to Original Data Size

Figure 6. 1 : Comparison of the Three Models

As Figure 6-1 shows, The second optimization model is the closest model to the
original model. Except that it has no limits on violations locations and can correct all
localized violations. Looking at the execution time column, the chart shows that the two
models just mentioned have almost equal average execution time. Figure 6-2 details the
execution time at every file size used during the testing process. The columns in green
show that the second optimization model has a better execution time than the original

model.

70

3.5

3 Exexution Time
us

M Original Model
B First Optimization Model

1 Second optimization Model

MNOONOOOCOO0OO0OCO0O0O0 o o
XA MITNOOOOODOSDODOODOOD
" ANOMITPODONRODACN

Figure 6. 2: Three models execution time
Figure 6-3 shows the comparison of metadata size of the three models. As seen in
the chart, the second optimization model is the closest to the original model and future

works aimed to reduce metadata size are suggested.

5 7 Metadata size to original
45 - size
4

M Original Model

B First Optimization Model

m Second optimization
Model

IR R IR
SO T QO O QO
VR e LSS

Figure 6. 3: Three models metadata size comparison with original file size

Description of violations Positions is available in Table 6-3.

71

Table 6. 3: Description of violation positions

Violation) o
o Interpretation Description
Position
SR :SC Single Row : Single Column The file has only one violation
SR : MC Single Row : Multiple Columns Multiple violations locate in one row
)) Multiple violations locate in one
SC: MR Single Column : Multiple Rows
column
) o Multiple violations in multiple rows
Multiple Rows : Distinct o)
MR : DC where each row is violated in one
Columns
column
) o Multiple violations in multiple columns
Multiple Columns : Distinct o)
MC : DR where each column is violated in one
Rows
row
)) Multiple violations in multiple rows
Multiple Rows : Multiple o .
MR : MC where each row is violated in more than
Columns)
one column and vice versa.

The positions of violations described in Table 6-3 will be used to refer to each

model. That is where each model can localize and correct without exception will be

listed in Table 6-4.

Table 6. 4: Position violation capability for each model

. . Second
Violation o First Optimization o
. Original Model Optimization
Position Model
Model
Single Violation SR:SC v v v
SR :MC v v v
SC: MR v v v
Multiple
_ _p MR : DC v v v
Violations
MC : DR v v v
MR : MC x v v

72

Table 6-4 clearly shows that the original model can correct the violations at all
locations except the ones described at the last row. However, the two optimized models

were able to correct the violations in the case from the last row.

6.3 Conclusion

The evaluation of the proposed method was based on the success and accuracy of
integrity violation detection and whether the violation was localized and corrected. The
size of the metadata needed to perform the check process was also evaluated. The model
was proved by testing and results to be highly accurate within described limitations.
Results show that the model was executed within 0.4723 ps average execution time.
Also, the size of metadata was about 0.944 from the original file size when the original
file size was bigger than or equal to 40KB. Two models were presented in chapter 5 to
enhance the original model of the thesis. Both aimed to target the original model
weakness about the limited allowed violation position. Although both of the
optimization models were able to fade this weakness successfully, other weakness

appeared on the surface.

The results in Table 6-2 shows the results of the three models:
1- Metadata size was a problem in both of the optimization models since its always
larger than the original data size.
e The first optimization model produced metadata 6.64 on average larger than
the original data size.
e The second optimization model produced metadata 1.82 in average larger than
the original data size.
2- As for execution time, the results in Table 6-2 shows that the second optimization

model was faster than both the original and the first optimization model.

From the results, the second optimization model shows the best enhancements on two

sides:

- Correction includes any localized index for violation.

- Execution time in the fastest with an average of 0.444 microseconds.

73

6.4 Future Work
The future work is suggested to provide solutions to the metadata size problem in
the second optimization model. A near future goal is to reduce the size of metadata to

equal the size of the original file.

Also, the second optimization model is empowered with the ability to restore the
original content of the violated file. So, its recommended to be used as a file restoration
system. Under the condition that the user has already saved his file data on the system

previously. See Figure 6-4.

Download Original Content

RestoredFileContents.txt

The Restored File Hash Value Matches The One on The Database

Figure 6. 4: Restored Original File Content
Also, suggestions to apply the model on other file types shall be considered in future

studies.

74

REFERENCES

References

Aldossary, S., & Allen, W. (2016). Data security, privacy, availability and integrity
in cloud computing: issues and current solutions. International Journal of Advanced
Computer Science and Applications, 7(4), 485-498.

Anil, S. L., & Thanka, R. (2013). A survey on security of data outsourcing in cloud.
International Journal of Scientific and Research Publications (1JSRP), 3.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., . . .
Stoica, I. (2009). Above the clouds: A berkeley view of cloud computing. Retrieved
from

Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., & Song,
D. (2007). Provable data possession at untrusted stores. Paper presented at the
Proceedings of the 14th ACM conference on Computer and communications
security.

Ateniese, G., Di Pietro, R., Mancini, L. V., & Tsudik, G. (2008). Scalable and
efficient provable data possession. Paper presented at the Proceedings of the 4th
international conference on Security and privacy in communication netowrks.

Bawaneh, M. J., Alkoffash, M. S., Algrainy, S., & Muaidi, H. (2016). A Practical
Comparison between Signature Approach and Other Existing Approaches in Error
Detection over TCP. Communications and Network, 8(01), 31.

Bessani, A. N., Mendes, R., Oliveira, T., Neves, N. F., Correia, M., Pasin, M., &
Verissimo, P. (2014). SCFS: A Shared Cloud-backed File System. Paper presented at
the USENIX Annual Technical Conference.

Borshack, R., Thomas, A. F., Einav, E., & Taron, P. E. (2016). Large scale file
storage in cloud computing. In: Google Patents.

Chi, L., & Zhu, X. (2017). Hashing techniques: A survey and taxonomy. ACM
Computing Surveys (CSUR), 50(1), 11.

Dang, Q. H. (2015). Secure hash standard. Retrieved from

De Spiegeleer, K. (2010). Efficient computer file backup system and method. In:
Google Patents.

Garfinkel, S. L., & McCarrin, M. J. D. I. (2015). Hash-based carving: Searching
media for complete files and file fragments with sector hashing and hashdb. 14, S95-
S105.

Han, S., Liu, S., Chen, K., & Gu, D. (2014). Proofs of retrievability based on MRD
codes. Paper presented at the International Conference on Information Security
Practice and Experience.

75

Kumar, R. S., & Saxena, A. (2011). Data integrity proofs in cloud storage. Paper
presented at the Communication Systems and Networks (COMSNETS), 2011 Third
International Conference on.

Leesakul, W., Townend, P., & Xu, J. (2014). Dynamic data deduplication in cloud
storage. Paper presented at the Service Oriented System Engineering (SOSE), 2014
IEEE 8th International Symposium on.

Lensing, P., Meister, D., & Brinkmann, A. (2010). hashfs: Applying hashing to
optimize file systems for small file reads. Paper presented at the Storage Network
Architecture and Parallel 1/0Os (SNAPI), 2010 International Workshop on.

Lulu, S. T. (2016). A Model to Detect the Integrity Violation of Shared File in the
Cloud. The Islamic University—Gaza, Gaza, Palestine.

Luo, W., & Bai, G. (2011). Ensuring the data integrity in cloud data storage. Paper
presented at the Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE
International Conference on.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.

Ora, P., & Pal, P. (2015). Data security and integrity in cloud computing based on
RSA partial homomorphic and MD5 cryptography. Paper presented at the Computer,
Communication and Control (IC4), 2015 International Conference on.

Rajathi, A., & Saravanan, N. (2013). A survey on secure storage in cloud computing.
Indian Journal of Science and Technology, 6(4), 4396-4401.

Rao, R. V., & Selvamani, K. (2015). Data security challenges and its solutions in
cloud computing. Procedia Computer Science, 48, 204-209.

Rong, C., Nguyen, S. T., & Jaatun, M. G. (2013). Beyond lightning: A survey on
security challenges in cloud computing. Computers & Electrical Engineering, 39(1),
47-54.

Samarati, P., di Vimercati, S. D. C., Murugesan, S., & Bojanova, I. (2016). Cloud
security: Issues and concerns. Encyclopedia on cloud computing, 1-14.

Sodhi, G. K., Gaba, G. S. J. J. 0. E. S., & Technology. (2018). AN EFFICIENT
HASH ALGORITHM TO PRESERVE DATA INTEGRITY. 13(3), 778-789.

Venkatesh, A., & Eastaff, M. S. (2018). A Study of Data Storage Security Issues in
Cloud Computing.

Voorsluys, W., Broberg, J., & Buyya, R. (2011). Introduction to cloud computing.
Cloud computing: Principles and paradigms, 1-41.

Wu, J.,, Ping, L., Ge, X,, Wang, Y., & Fu, J. (2010). Cloud storage as the
infrastructure of cloud computing. Paper presented at the Intelligent Computing and
Cognitive Informatics (ICICCI), 2010 International Conference on.

76

Xu, J., & Chang, E.-C. (2012). Towards efficient proofs of retrievability. Paper
presented at the Proceedings of the 7th ACM symposium on information, computer
and communications security.

Zafar, F., Khan, A., Malik, S. U. R., Ahmed, M., Anjum, A., Khan, M. L., . .. Jamil,
F. (2017). A survey of cloud computing data integrity schemes: Design challenges,
taxonomy and future trends. Computers & Security, 65, 29-49.

Zhu, Y., Hu, H., Ahn, G.-J,, Yu, M. J. I. t. 0. p., & systems, d. (2012). Cooperative
provable data possession for integrity verification in multicloud storage. 23(12),
2231-2244,

77

